<div class="csl-bib-body">
<div class="csl-entry">Styll, P., Kusa, W., & Hanbury, A. (2024). Enhancing Clinical Data Capture: Developing a Natural Language Processing Pipeline for Converting Free Text Admission Notes to Structured EHR Data. In <i>NL4AI 2024: Eight Workshop on Natural Language for Artificial Intelligence</i>. NL4AI 2024: Eight Workshop on Natural Language for Artificial Intelligence, Bolzano, Italy. http://hdl.handle.net/20.500.12708/210208</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/210208
-
dc.description.abstract
Automating the extraction of essential patient information from clinical texts, such as admission notes, can
significantly enhance the entry of this data into Electronic Health Records (EHR), thereby enhancing workflow
efficiency and supporting improved patient care and healthcare management. To address this issue, we introduce
a Natural Language Processing (NLP) pipeline designed to (i) automatically extract patient data via Named Entity
Recognition (NER), (ii) normalize the extracted data to correspond to codes in official medical ontologies, and
(iii) coerce the data into EHR format using Health Level 7’s (HL7) Fast Healthcare Interoperability Resources
(FHIR) standard. By adhering to these widely used standardized formats, the pipeline output can be immediately
integrated into the Hospital Information System (HIS).
To achieve this, we propose a newly labeled dataset comprising 255 notes from unlabelled datasets published by
the Text Retrieval Conference’s (TREC) Clinical Trials tracks. Finally, we utilize SapBERT for the normalization
of extracted entities and employ the FHIR standard as a basis to generate Electronic Health Records (EHRs).
en
dc.description.sponsorship
European Commission
-
dc.language.iso
en
-
dc.subject
Clinical Named Entity Recognition
en
dc.subject
SapBERT
en
dc.subject
FHIR
en
dc.subject
Electronic Health Records
en
dc.subject
ICD-10
en
dc.subject
NDC
en
dc.title
Enhancing Clinical Data Capture: Developing a Natural Language Processing Pipeline for Converting Free Text Admission Notes to Structured EHR Data
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.contributor.affiliation
TU Wien, Austria
-
dc.relation.issn
1613-0073
-
dc.relation.grantno
860721
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
NL4AI 2024: Eight Workshop on Natural Language for Artificial Intelligence
-
tuw.container.volume
3877
-
tuw.peerreviewed
true
-
tuw.book.ispartofseries
CEUR Workshop Proceedings
-
tuw.project.title
Domänen-spezifische Systeme für Informationsextraktion und -suche
-
tuw.researchTopic.id
I4
-
tuw.researchTopic.name
Information Systems Engineering
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E194-04 - Forschungsbereich Data Science
-
dc.description.numberOfPages
8
-
tuw.author.orcid
0000-0003-4420-4147
-
tuw.author.orcid
0000-0002-7149-5843
-
tuw.event.name
NL4AI 2024: Eight Workshop on Natural Language for Artificial Intelligence
en
tuw.event.startdate
26-11-2024
-
tuw.event.enddate
27-11-2024
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Bolzano
-
tuw.event.country
IT
-
tuw.event.presenter
Styll, Patrick
-
wb.sciencebranch
Informatik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.value
100
-
item.cerifentitytype
Publications
-
item.languageiso639-1
en
-
item.fulltext
no Fulltext
-
item.openairetype
conference paper
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.grantfulltext
none
-
crisitem.project.funder
European Commission
-
crisitem.project.grantno
860721
-
crisitem.author.dept
TU Wien
-
crisitem.author.dept
E194-04 - Forschungsbereich Data Science
-
crisitem.author.dept
E194-04 - Forschungsbereich Data Science
-
crisitem.author.orcid
0000-0003-4420-4147
-
crisitem.author.orcid
0000-0002-7149-5843
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering