<div class="csl-bib-body">
<div class="csl-entry">Ortega-Martorell, S., Olier-Caparroso, I., Ohlsson, M., Lip, G., Hose, K., Tomaszuk, D., & TARGET Consortium. (2024). Advancing personalised care in atrial fibrillation and stroke: The potential impact of AI from prevention to rehabilitation. <i>Trends in Cardiovascular Medicine</i>. https://doi.org/10.1016/j.tcm.2024.12.003</div>
</div>
-
dc.identifier.issn
1050-1738
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/210252
-
dc.description.abstract
Atrial fibrillation (AF) is a complex condition caused by various underlying pathophysiological disorders and is the most common heart arrhythmia worldwide, affecting 2 % of the European population. This prevalence increases with age, imposing significant financial, economic, and human burdens. In Europe, stroke is the second leading cause of death and the primary cause of disability, with numbers expected to rise due to ageing and improved survival rates. Functional recovery from AF-related stroke is often unsatisfactory, leading to prolonged hospital stays, severe disability, and high mortality.
Despite advances in AF and stroke research, the full pathophysiological and management issues between AF and stroke increasingly need innovative approaches such as artificial intelligence (AI) and machine learning (ML). Current risk assessment tools focus on static risk factors, neglecting the dynamic nature of risk influenced by acute illness, ageing, and comorbidities. Incorporating biomarkers and automated ECG analysis could enhance pathophysiological understanding.
This paper highlights the need for personalised, integrative approaches in AF and stroke management, emphasising the potential of AI and ML to improve risk prediction, treatment personalisation, and rehabilitation outcomes. Further research is essential to optimise care and reduce the burden of AF and stroke on patients and healthcare systems.
en
dc.description.sponsorship
European Commission
-
dc.language.iso
en
-
dc.publisher
ELSEVIER SCIENCE LONDON
-
dc.relation.ispartof
Trends in Cardiovascular Medicine
-
dc.subject
Artificial Intelligence
en
dc.subject
Machine Learning
en
dc.subject
Personalised care
en
dc.subject
Atrial Fibrillation
en
dc.subject
Stroke
en
dc.subject
Digital Twins
en
dc.subject
Burden
en
dc.subject
impact
en
dc.subject
Significance
en
dc.title
Advancing personalised care in atrial fibrillation and stroke: The potential impact of AI from prevention to rehabilitation
en
dc.type
Article
en
dc.type
Artikel
de
dc.contributor.affiliation
Liverpool John Moores University, United Kingdom of Great Britain and Northern Ireland (the)
-
dc.contributor.affiliation
Lund University, Sweden
-
dc.contributor.affiliation
University of Liverpool, United Kingdom of Great Britain and Northern Ireland (the)
-
dc.relation.grantno
???
-
dc.type.category
Original Research Article
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
wb.publication.intCoWork
International Co-publication
-
tuw.project.title
Health virtual twins for the personalised management of stroke related to atrial fibrillation
-
tuw.researchTopic.id
I1
-
tuw.researchTopic.name
Logic and Computation
-
tuw.researchTopic.value
100
-
dcterms.isPartOf.title
Trends in Cardiovascular Medicine
-
tuw.publication.orgunit
E192-02 - Forschungsbereich Databases and Artificial Intelligence
-
tuw.publisher.doi
10.1016/j.tcm.2024.12.003
-
dc.date.onlinefirst
2024-12-07
-
dc.identifier.eissn
1873-2615
-
dc.description.numberOfPages
7
-
tuw.author.orcid
0000-0001-9927-3209
-
tuw.author.orcid
0000-0003-1145-4297
-
tuw.author.orcid
0000-0002-7566-1626
-
tuw.author.orcid
0000-0001-7025-8099
-
tuw.author.orcid
0000-0003-1806-067X
-
wb.sci
true
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
80
-
wb.sciencebranch.value
20
-
dc.contributor.authorgroup
TARGET Consortium
-
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
item.openairetype
research article
-
item.fulltext
no Fulltext
-
item.languageiso639-1
en
-
item.grantfulltext
none
-
item.cerifentitytype
Publications
-
crisitem.author.dept
Liverpool John Moores University
-
crisitem.author.dept
E192-02 - Forschungsbereich Databases and Artificial Intelligence
-
crisitem.author.dept
Lund University
-
crisitem.author.dept
University of Liverpool
-
crisitem.author.dept
E192-02 - Forschungsbereich Databases and Artificial Intelligence
-
crisitem.author.dept
E192-02 - Forschungsbereich Databases and Artificial Intelligence