<div class="csl-bib-body">
<div class="csl-entry">Hug, D., Mußnig, F., & Ulivelli, J. (2024). <i>Kubota-type formulas and supports of mixed measures</i>. arXiv. https://doi.org/10.48550/arXiv.2401.16371</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/210422
-
dc.description.abstract
Motivated by a problem for mixed Monge–Ampere measures of convex func- `
tions, we address a special case of a conjecture of Schneider and show that for every
convex body K the support of the mixed area measure S(K[ j],B
n−1
L
[n− 1− j],·)
is given by the set of (K[ j],B
n−1
L
[n− 1− j])-extreme unit normal vectors, where
B
n−1
L
denotes the (n− 1)-dimensional Euclidean unit ball in a hyperplane L. As
a consequence, we see that the supports of these measures are nested. Our proof
introduces a Kubota-type formula for mixed area measures, which involves in tegration over j-dimensional linear subspaces that contain a fixed 1-dimensional
subspace. We transfer these results to the analytic setting, where we obtain cor responding statements for (conjugate) mixed Monge–Ampere measures of convex `
functions. Thereby, we establish a fundamental property for functional intrinsic
volumes. In addition, we study connections between mixed Monge–Ampere mea- `
sures of convex functions and mixed area measures and mixed volumes of convex
bodies.
en
dc.description.sponsorship
FWF - Österr. Wissenschaftsfonds
-
dc.description.sponsorship
FWF - Österr. Wissenschaftsfonds
-
dc.description.sponsorship
FWF - Österr. Wissenschaftsfonds
-
dc.language.iso
en
-
dc.subject
mixed area measure
en
dc.subject
support
en
dc.subject
mixed Monge-Ampère measure
en
dc.subject
convex function
en
dc.subject
Kubota formula
en
dc.subject
valuation
en
dc.title
Kubota-type formulas and supports of mixed measures
en
dc.type
Preprint
en
dc.type
Preprint
de
dc.identifier.arxiv
2401.16371
-
dc.relation.grantno
J 4490
-
dc.relation.grantno
P 36210
-
dc.relation.grantno
P 34446-N
-
tuw.project.title
Hessische Ungleichungen und Erweiterungen auf Sobolev-Räumen
-
tuw.project.title
Integralgeometrie auf konvexen Funktionen
-
tuw.project.title
Bewertungen auf konvexen Funktionen
-
tuw.researchTopic.id
A3
-
tuw.researchTopic.name
Fundamental Mathematics Research
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E104-06 - Forschungsbereich Konvexe und Diskrete Geometrie
-
tuw.publisher.doi
10.48550/arXiv.2401.16371
-
dc.description.numberOfPages
37
-
tuw.author.orcid
0000-0002-4039-5217
-
tuw.author.orcid
0000-0003-2012-1590
-
tuw.author.orcid
0000-0002-4726-5271
-
dc.description.sponsorshipexternal
DFG
-
dc.relation.grantnoexternal
HU 1874/5-1
-
tuw.publisher.server
arXiv
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
100
-
item.languageiso639-1
en
-
item.openairetype
preprint
-
item.grantfulltext
none
-
item.fulltext
no Fulltext
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_816b
-
crisitem.author.dept
Karlsruhe Institute of Technology
-
crisitem.author.dept
E104-06 - Forschungsbereich Konvexe und Diskrete Geometrie
-
crisitem.author.dept
E104-06 - Forschungsbereich Konvexe und Diskrete Geometrie
-
crisitem.author.orcid
0000-0002-4039-5217
-
crisitem.author.orcid
0000-0003-2012-1590
-
crisitem.author.orcid
0000-0002-4726-5271
-
crisitem.author.parentorg
E104 - Institut für Diskrete Mathematik und Geometrie
-
crisitem.author.parentorg
E104 - Institut für Diskrete Mathematik und Geometrie