<div class="csl-bib-body">
<div class="csl-entry">Lederer, M. (2024, September 3). <i>A generalized formulation of first strain gradient elasticity</i> [Conference Presentation]. 14th National Congress on Theoretical and Applied Mechanics, Sofia, Bulgaria.</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/210534
-
dc.description.abstract
Strain gradient elasticity is an enriched version of continuum mechanics, where in addition to the first gradient also the second gradient of displacements is considered in the expression for the elastic energy density. This leads to the advantage that size dependent material properties can be explained. However, the determination of the length scale parameters of the theory is a difficult task. Depending on the method used, one derives different values for the material dependent parameters. If one determines the parameters from fits to bending experiments performed with micro cantilever beams, then length scale parameters in the range of a few µm are derived. But if one instead uses the phonon dispersion relation for determination of the parameters, then length scales in the nm range are obtained. The present investigation attempts to resolve this contradiction by introducing additional terms, which are added to the energy density. By analogy to Mindlin’s theory, there is an energy contribution proportional to the square of strain gradients, whereby the correlated proportionality constants have the dimension of a force. However, in the new formulation also square roots of fourth order terms in strain gradients are allowed instead of using just quadratic forms of strain gradients. Consequently, one arrives at a theory with a larger number of material parameters, and it is therefore easier to distinguish different deformation modes from each other. In conclusion, one can describe the stiffness of all relevant deformation modes with one consistent set of material parameters. In order to evaluate this material behaviour, a Finite Element implementation based on the penalty method is elaborated. Finally, the simulation method is demonstrated for typical examples of small scaled structures.
en
dc.description.sponsorship
FWF - Österr. Wissenschaftsfonds
-
dc.language.iso
en
-
dc.subject
strain gradient elasticity
en
dc.subject
bending of beams
en
dc.subject
length scale parameter
en
dc.subject
Finite Element Analysis
en
dc.subject
penalty method
en
dc.title
A generalized formulation of first strain gradient elasticity
en
dc.type
Presentation
en
dc.type
Vortrag
de
dc.relation.grantno
P 36626-N
-
dc.type.category
Conference Presentation
-
tuw.project.title
Computergestützte Strukturmechanik der Dehnungsgradiententheorie
-
tuw.researchinfrastructure
Vienna Scientific Cluster
-
tuw.researchTopic.id
C6
-
tuw.researchTopic.id
C1
-
tuw.researchTopic.name
Modeling and Simulation
-
tuw.researchTopic.name
Computational Materials Science
-
tuw.researchTopic.value
50
-
tuw.researchTopic.value
50
-
tuw.publication.orgunit
E164-03-2 - Forschungsgruppe Mechanische Eigenschaften und Zuverlässigkeit
-
tuw.event.name
14th National Congress on Theoretical and Applied Mechanics
en
tuw.event.startdate
02-09-2024
-
tuw.event.enddate
04-09-2024
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Sofia
-
tuw.event.country
BG
-
tuw.event.institution
Bulgarische Akademie der Wissenschaften
-
tuw.event.presenter
Lederer, Martin
-
tuw.event.track
Multi Track
-
wb.sciencebranch
Chemie
-
wb.sciencebranch
Physik, Astronomie
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1040
-
wb.sciencebranch.oefos
1030
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
34
-
wb.sciencebranch.value
33
-
wb.sciencebranch.value
33
-
item.languageiso639-1
en
-
item.openairetype
conference paper not in proceedings
-
item.grantfulltext
none
-
item.fulltext
no Fulltext
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_18cp
-
crisitem.author.dept
E164-03-2 - Forschungsgruppe Mechanische Eigenschaften und Zuverlässigkeit