<div class="csl-bib-body">
<div class="csl-entry">von Berg, B., Aichernig, B. K., Rindler, M., Štern, D., & Tappler, M. (2024). Hierarchical Learning of Generative Automaton Models from Sequential Data. In <i>Software Engineering and Formal Methods</i> (pp. 215–233). https://doi.org/10.1007/978-3-031-77382-2_13</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/210666
-
dc.description.abstract
Passive automata learning is a method for inferring automaton models from a given collection of observations of system behavior (traces). It has been applied to reactive systems with probabilistic behavior. In particular, IOAlergia is a well known algorithm for inferring models in the form of deterministically labeled Markov decision processes from system traces. The quality of the resulting model depends heavily on the provided data set and suffers if data is scarce. However, in many cases additional knowledge about the system is available. This work aims to incorporate knowledge about system modes into the learning process in order to improve model quality for low-data scenarios. This is done by splitting the traces according to system modes, learning individual models for each mode and combining those models into one model with sub-regions corresponding to individual system modes. In our evaluation on artificial models, our method outperforms the baseline in at least 90 % of cases for all considered metrics. This method was developed to learn generative models of human driving behavior. Data from recorded test drives on highways was used to learn a hierarchical stochastic model of typical acceleration behavior of human drivers. In the automotive industry, such models make the simulations of driving emissions more realistic.
-
dc.language.iso
en
-
dc.relation.ispartofseries
Lecture Notes in Computer Science
-
dc.subject
generative models
-
dc.subject
Markov decision processes
-
dc.subject
model inference
-
dc.subject
passive automata learning
-
dc.subject
real driving emissions
-
dc.title
Hierarchical Learning of Generative Automaton Models from Sequential Data
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.contributor.affiliation
Graz University of Technology, Austria
-
dc.relation.isbn
978-3-031-77381-5
-
dc.relation.doi
10.1007/978-3-031-77382-2
-
dc.description.startpage
215
-
dc.description.endpage
233
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
Software Engineering and Formal Methods
-
tuw.container.volume
15280
-
tuw.peerreviewed
true
-
tuw.book.ispartofseries
Lecture Notes in Computer Science
-
tuw.researchTopic.id
I1
-
tuw.researchTopic.id
C5
-
tuw.researchTopic.id
C6
-
tuw.researchTopic.name
Logic and Computation
-
tuw.researchTopic.name
Computer Science Foundations
-
tuw.researchTopic.name
Modeling and Simulation
-
tuw.researchTopic.value
30
-
tuw.researchTopic.value
30
-
tuw.researchTopic.value
40
-
tuw.publication.orgunit
E191-01 - Forschungsbereich Cyber-Physical Systems
-
tuw.publisher.doi
10.1007/978-3-031-77382-2_13
-
dc.description.numberOfPages
19
-
tuw.author.orcid
0009-0001-3595-4715
-
tuw.author.orcid
0000-0002-3484-5584
-
tuw.author.orcid
0000-0003-3449-5497
-
tuw.author.orcid
0000-0002-4193-5609
-
tuw.event.name
Software Engineering and Formal Methods - 22nd International Conference, SEFM 2024
en
tuw.event.startdate
06-11-2024
-
tuw.event.enddate
08-01-2025
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Aveiro
-
tuw.event.country
PT
-
tuw.event.presenter
von Berg, Benjamin
-
tuw.event.track
Single Track
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Elektrotechnik, Elektronik, Informationstechnik
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
2020
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
50
-
wb.sciencebranch.value
40
-
wb.sciencebranch.value
10
-
item.openairetype
conference paper
-
item.languageiso639-1
en
-
item.cerifentitytype
Publications
-
item.fulltext
no Fulltext
-
item.grantfulltext
none
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
crisitem.author.dept
Graz University of Technology
-
crisitem.author.dept
E191-01 - Forschungsbereich Cyber-Physical Systems