<div class="csl-bib-body">
<div class="csl-entry">Mayer, F. (2024). <i>Applications of concentration inequalities in distributional reinforcement learning</i> [Diploma Thesis, Technische Universität Wien]. reposiTUm. https://doi.org/10.34726/hss.2025.124987</div>
</div>
-
dc.identifier.uri
https://doi.org/10.34726/hss.2025.124987
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/210745
-
dc.description
Abweichender Titel nach Übersetzung der Verfasserin/des Verfassers
-
dc.description.abstract
Distributional reinforcement learning extends traditional reinforcement learning by modeling the entire distribution of returns, providing several advantages, such as insight into potential outcomes and associated risks. However, this approach results in higher computational complexity. This thesis investigates the application of different concentration inequalities, specifically the Hoeffding, Bernstein, and Bennett inequalities to find tighter bounds on the Cramérdistance between the estimated reward distributions and the true reward distribution. Tighter bounds enhance the analysis of algorithms, such as the speedy Q-learning algorithm within the distributional reinforcement learning framework. To validate the theoretical findings, a complexity analysis is conducted to determine which inequality provides the most robust and reliable bounds under varying accuracy requirements and environmental complexities. In addition to that, simulation studies are performed using the Taxi and FrozenLake environments from the Gymnasium library in Python. These simulations compare theperformance of each inequality and observe their impact on the convergence behavior ofthe learning algorithms. The tightest bound on the Cramér distance is achieved using the Bennett inequality, followed by the bound obtained through the Bernstein inequality. However, when the number of training episodes is small, the bound derived from the Hoeffding inequality exceeds the Bernstein bound in terms of tightness.
en
dc.language
English
-
dc.language.iso
en
-
dc.rights.uri
http://rightsstatements.org/vocab/InC/1.0/
-
dc.subject
Distributional reinforcement learning
en
dc.subject
speedy Q-learning
en
dc.subject
Concentration inequalities
en
dc.subject
Complexity analysis
en
dc.subject
Convergence analysis
en
dc.subject
Experimental evaluation
en
dc.subject
Bound
en
dc.title
Applications of concentration inequalities in distributional reinforcement learning
en
dc.title.alternative
Anwendungen von Konzentrationsungleichungen im distributionellen Reinforcement Learning
de
dc.type
Thesis
en
dc.type
Hochschulschrift
de
dc.rights.license
In Copyright
en
dc.rights.license
Urheberrechtsschutz
de
dc.identifier.doi
10.34726/hss.2025.124987
-
dc.contributor.affiliation
TU Wien, Österreich
-
dc.rights.holder
Florian Mayer
-
dc.publisher.place
Wien
-
tuw.version
vor
-
tuw.thesisinformation
Technische Universität Wien
-
tuw.publication.orgunit
E194 - Institut für Information Systems Engineering
-
dc.type.qualificationlevel
Diploma
-
dc.identifier.libraryid
AC17425123
-
dc.description.numberOfPages
50
-
dc.thesistype
Diplomarbeit
de
dc.thesistype
Diploma Thesis
en
dc.rights.identifier
In Copyright
en
dc.rights.identifier
Urheberrechtsschutz
de
tuw.advisor.staffStatus
staff
-
item.openairecristype
http://purl.org/coar/resource_type/c_bdcc
-
item.languageiso639-1
en
-
item.openaccessfulltext
Open Access
-
item.fulltext
with Fulltext
-
item.grantfulltext
open
-
item.openairetype
master thesis
-
item.cerifentitytype
Publications
-
crisitem.author.dept
E105 - Institut für Stochastik und Wirtschaftsmathematik