<div class="csl-bib-body">
<div class="csl-entry">Budi Herwanto, G., Quirchmayr, G., & Tjoa, A. M. (2024). Learning to Rank Privacy Design Patterns: A Semantic Approach to Meeting Privacy Requirements. In <i>Requirements Engineering: Foundation for Software Quality: 30th International Working Conference, REFSQ 2024, Winterthur, Switzerland, April 8–11, 2024, Proceedings</i> (pp. 57–73). Springer. https://doi.org/10.1007/978-3-031-57327-9_4</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/210755
-
dc.description.abstract
[Context and Motivation] Privacy requirements engineering is a critical aspect of software design to ensure that user data is protected in accordance with both regulatory and privacy objectives. The privacy requirements identified through this process can be addressed using various privacy design patterns. [Question/Problem] Identifying and implementing the most suitable privacy design patterns poses a major challenge for developers. They need to meticulously examine a wide range of options, which makes it challenging to quickly and effectively choose and justify the best solutions. [Key Ideas/Results] To address this gap, we developed a machine learning model that focuses on semantic text features and learning-to-rank algorithms to recommend privacy design patterns that meet specified privacy requirements. [Contribution] The main contribution of this paper is the development of a recommendation system for privacy design patterns based on privacy requirements using only text-based attributes. Our system’s reliance on text as the sole input guarantees its broad applicability, avoiding the constraints of fixed mappings prevalent in previous methodologies. The performance of the model has shown encouraging results in understanding the semantic meaning of privacy requirements and mapping them to privacy design patterns, indicating its suitability for inclusion in the privacy engineering process.
en
dc.language.iso
en
-
dc.relation.ispartofseries
Lecture Notes in Computer Science
-
dc.subject
privacy requirements engineering
en
dc.subject
privacy design pattern
en
dc.subject
natural language processing
en
dc.subject
learning to rank
en
dc.title
Learning to Rank Privacy Design Patterns: A Semantic Approach to Meeting Privacy Requirements
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.relation.publication
Requirements Engineering: Foundation for Software Quality: 30th International Working Conference, REFSQ 2024, Winterthur, Switzerland, April 8–11, 2024, Proceedings
-
dc.contributor.affiliation
University of Vienna, Austria
-
dc.relation.isbn
978-3-031-57326-2
-
dc.relation.doi
10.1007/978-3-031-57327-9
-
dc.relation.issn
0302-9743
-
dc.description.startpage
57
-
dc.description.endpage
73
-
dc.type.category
Full-Paper Contribution
-
dc.relation.eissn
1611-3349
-
tuw.booktitle
Requirements Engineering: Foundation for Software Quality: 30th International Working Conference, REFSQ 2024, Winterthur, Switzerland, April 8–11, 2024, Proceedings
-
tuw.container.volume
14588
-
tuw.peerreviewed
true
-
tuw.relation.publisher
Springer
-
tuw.relation.publisherplace
Cham
-
tuw.researchTopic.id
I4
-
tuw.researchTopic.name
Information Systems Engineering
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E194-01 - Forschungsbereich Software Engineering
-
tuw.publication.orgunit
E194-04 - Forschungsbereich Data Science
-
tuw.publication.orgunit
E056-19 - Fachbereich Precision Livestock Farming
-
tuw.publisher.doi
10.1007/978-3-031-57327-9_4
-
dc.description.numberOfPages
17
-
tuw.author.orcid
0000-0003-0250-6884
-
tuw.author.orcid
0000-0002-8295-9252
-
tuw.event.name
30th International Working Conference Requirements Engineering: Foundation for Software Quality (REFSQ 2024)
en
tuw.event.startdate
08-04-2024
-
tuw.event.enddate
11-04-2024
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Winterthur
-
tuw.event.country
CH
-
tuw.event.presenter
Budi Herwanto, Guntur
-
tuw.event.track
Single Track
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Wirtschaftswissenschaften
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
5020
-
wb.sciencebranch.value
90
-
wb.sciencebranch.value
10
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.openairetype
conference paper
-
item.fulltext
no Fulltext
-
item.languageiso639-1
en
-
item.grantfulltext
none
-
item.cerifentitytype
Publications
-
crisitem.author.dept
University of Vienna
-
crisitem.author.dept
E194-04 - Forschungsbereich Data Science
-
crisitem.author.orcid
0000-0003-0250-6884
-
crisitem.author.orcid
0000-0002-8295-9252
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering