<div class="csl-bib-body">
<div class="csl-entry">Baumgartner, L., & Szmolyan, P. (2024). <i>A Multi-Parameter Singular Perturbation Analysis of the Robertson Model</i>. arXiv. https://doi.org/10.48550/arXiv.2407.04008</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/210764
-
dc.description.abstract
The Robertson model describing a chemical reaction involving three reactants is one of the classical examples of stiffness in ODEs. The stiffness is caused by the occurrence of three reaction rates k1,k2, and k3, with largely differing orders of magnitude, acting as parameters. The model has been widely used as a numerical test problem. Surprisingly, no asymptotic analysis of this multiscale problem seems to exist. In this paper we provide a full asymptotic analysis of the Robertson model under the assumption k1,k3≪k2. We rewrite the equations as a two-parameter singular perturbation problem in the rescaled small parameters (ε1,ε2):=(k1/k2,k3/k2), which we then analyze using geometric singular perturbation theory (GSPT). To deal with the multi-parameter singular structure, we perform blow-ups in parameter- and variable space. We identify four distinct regimes in a neighbourhood of the singular limit \mbox{(ε1,ε2)=(0,0)}. Within these four regimes we use GSPT and additional blow-ups to analyze the dynamics and the structure of solutions. Our asymptotic results are in excellent qualitative and quantitative agreement with the numerics.
en
dc.language.iso
en
-
dc.subject
multi-parameter singular perturbation
en
dc.subject
Robertson model
en
dc.subject
geometric singular perturbation theory
en
dc.subject
blow-up method
en
dc.title
A Multi-Parameter Singular Perturbation Analysis of the Robertson Model
en
dc.type
Preprint
en
dc.type
Preprint
de
dc.identifier.arxiv
2407.04008
-
tuw.researchTopic.id
C4
-
tuw.researchTopic.name
Mathematical and Algorithmic Foundations
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E101-01 - Forschungsbereich Analysis
-
tuw.publisher.doi
10.48550/arXiv.2407.04008
-
dc.description.numberOfPages
28
-
tuw.author.orcid
0009-0007-0080-4171
-
tuw.publisher.server
arXiv
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
100
-
item.languageiso639-1
en
-
item.openairetype
preprint
-
item.grantfulltext
none
-
item.fulltext
no Fulltext
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_816b
-
crisitem.author.dept
E101-01 - Forschungsbereich Analysis
-
crisitem.author.dept
E101-01 - Forschungsbereich Analysis
-
crisitem.author.orcid
0009-0007-0080-4171
-
crisitem.author.parentorg
E101 - Institut für Analysis und Scientific Computing
-
crisitem.author.parentorg
E101 - Institut für Analysis und Scientific Computing