<div class="csl-bib-body">
<div class="csl-entry">Korchemna, V., Lokshtanov, D., Saurabh, S., Surianarayanan, V., & Xue, J. (2024). Efficient Approximation of Fractional Hypertree Width. In <i>2024 IEEE 65th Annual Symposium on Foundations of Computer Science (FOCS)</i> (pp. 754–779). IEEE. https://doi.org/10.1109/FOCS61266.2024.00053</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/210862
-
dc.description.abstract
We give two new approximation algorithms to compute the fractional hypertree width of an input hypergraph. The first algorithm takes as input n-vertex m-edge hypergraph $H$ of fractional hypertree width at most $\omega$, runs in polynomial time and produces a tree decomposition of $H$ of fractional hypertree width $\mathcal{O}(\omega\log n\log\omega)$, i.e., it is an $\mathcal{O}(\log n\log\omega)$-approximation algorithm. As an immediate corollary this yields poly-nomial time $\mathcal{O}(\log^{2}n\log\omega)$-approximation algorithms for (generalized) hypertree width as well. To the best of our knowledge our algorithm is the first non-trivial polynomial-time approximation algorithm for fractional hypertree width and (generalized) hypertree width, as opposed to algorithms that run in polynomial time only when $\omega$ is considered a constant. For hypergraphs where every pair of hyperedges have at most $\eta$ vertices in common, the al-gorithm outputs a hypertree decomposition with fractional hypertree width $\mathcal{O}(\eta\omega^{2}\log\omega)$ and generalized hypertree width $\mathcal{O}(\eta\omega^{2}\log\omega(\log\eta+\text{log}\omega))$. This ratio is comparable with the recent algorithm of Lanzinger and Razgon [STACS 2024], which produces a hypertree decomposition with generalized hypertree width ${\mathcal{O}}(\omega^{2}(\omega+\eta))$, but uses time (at least) exponential in $\eta$ and $\omega$. The second algorithm runs in time $n^{\omega}m^{\mathcal{O}(1)}$ and pro-duces a tree decomposition of $H$ of fractional hypertree width $\mathcal{O}(\omega{\mathrm{l}}\text{og}^{2}\omega)$. This significantly improves over the $(n+m)^{\mathcal{O}(\omega^{3})}$ time algorithm of Marx [ACM TALG 2010], which produces a tree decomposition of fractional hyper-tree width $\mathcal{O}(\omega^{3})$, both in terms of running time and the approximation ratio. Our main technical contribution, and the key insight behind both algorithms, is a variant of the classic Menger's Theorem for clique separators in graphs: For every graph $G$, vertex sets $A$ and $B$, family $\mathcal{F}$ of cliques in $G$, and positive rational $f$, either there exists a sub-family of $\mathcal{O}(f \cdot {\mathrm{l}}\text{og}^{2}n)$ cliques in $\mathcal{F}$ whose union separates $A$ from $B$, or there exist $f\cdot\log\vert \mathcal{F}\vert$ paths from $A$ to $B$ such that no clique in $\mathcal{F}$ intersects more than $\log\vert \mathcal{F}\vert$ paths.
en
dc.language.iso
en
-
dc.subject
hypertree width
en
dc.subject
fractional hypertree width
en
dc.subject
generalized hypertree width
en
dc.subject
approximation
en
dc.subject
mengers theorem
en
dc.subject
tree decompositions
en
dc.subject
hypergraphs
en
dc.subject
exact exponential
en
dc.subject
databases
en
dc.subject
conjunctive queries
en
dc.subject
csp
en
dc.title
Efficient Approximation of Fractional Hypertree Width
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.relation.publication
2024 IEEE 65th Annual Symposium on Foundations of Computer Science (FOCS)
-
dc.contributor.affiliation
University of California, Santa Barbara, United States of America (the)
-
dc.contributor.affiliation
University of Bergen, Norway
-
dc.contributor.affiliation
University of California, Santa Barbara, United States of America (the)
-
dc.contributor.affiliation
New York University Shanghai, China
-
dc.relation.isbn
979-8-3315-1674-1
-
dc.relation.doi
10.1109/FOCS61266.2024
-
dc.relation.issn
1523-8288
-
dc.description.startpage
754
-
dc.description.endpage
779
-
dc.type.category
Full-Paper Contribution
-
dc.relation.eissn
2575-8454
-
tuw.booktitle
2024 IEEE 65th Annual Symposium on Foundations of Computer Science (FOCS)
-
tuw.peerreviewed
true
-
tuw.relation.publisher
IEEE
-
tuw.relation.publisherplace
Piscataway
-
tuw.researchTopic.id
I1
-
tuw.researchTopic.name
Logic and Computation
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E192-01 - Forschungsbereich Algorithms and Complexity
-
tuw.publisher.doi
10.1109/FOCS61266.2024.00053
-
dc.description.numberOfPages
26
-
tuw.event.name
65th Annual Symposium on Foundations of Computer Science (FOCS 2024)
en
tuw.event.startdate
27-10-2024
-
tuw.event.enddate
30-10-2024
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Chicago, IL
-
tuw.event.country
US
-
tuw.event.presenter
Korchemna, Viktoria
-
tuw.event.track
Multi Track
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
80
-
wb.sciencebranch.value
20
-
item.languageiso639-1
en
-
item.openairetype
conference paper
-
item.grantfulltext
none
-
item.fulltext
no Fulltext
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
crisitem.author.dept
E192-01 - Forschungsbereich Algorithms and Complexity