<div class="csl-bib-body">
<div class="csl-entry">Herbst, S., De Maio, V., & Brandic, I. (2024). Streaming IoT Data and the Quantum Edge: A Classic/Quantum Machine Learning Use Case. In <i>Euro-Par 2023: Parallel Processing Workshops : Euro-Par 2023 International Workshops Limassol, Cyprus, August 28 – September 1, 2023 Revised Selected Papers, Part I</i> (pp. 177–188). Springer. https://doi.org/10.1007/978-3-031-50684-0_14</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/210966
-
dc.description.abstract
With the advent of the Post-Moore era, the scientific community is faced with the challenge of addressing the demands of current data-intensive machine learning applications, which are the cornerstone of urgent analytics in distributed computing. Quantum machine learning could be a solution for the increasing demand of urgent analytics, providing potential theoretical speedups and increased space efficiency. However, challenges such as (1) the encoding of data from the classical to the quantum domain, (2) hyperparameter tuning, and (3) the integration of quantum hardware into a distributed computing continuum limit the adoption of quantum machine learning for urgent analytics. In this work, we investigate the use of Edge computing for the integration of quantum machine learning into a distributed computing continuum, identifying the main challenges and possible solutions. Furthermore, exploring the data encoding and hyperparameter tuning challenges, we present preliminary results for quantum machine learning analytics on an IoT scenario.
en
dc.description.sponsorship
FFG - Österr. Forschungsförderungs- gesellschaft mbH
-
dc.description.sponsorship
FFG - Österr. Forschungsförderungs- gesellschaft mbH
-
dc.description.sponsorship
FWF - Österr. Wissenschaftsfonds
-
dc.description.sponsorship
FWF - Österr. Wissenschaftsfonds
-
dc.language.iso
en
-
dc.relation.ispartofseries
Lecture Notes in Computer Science
-
dc.subject
Compute continuum
en
dc.subject
IoT-edge-cloud
en
dc.subject
distributed systems
en
dc.title
Streaming IoT Data and the Quantum Edge: A Classic/Quantum Machine Learning Use Case
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.relation.isbn
978-3-031-50684-0
-
dc.relation.doi
10.1007/978-3-031-50684-0
-
dc.description.startpage
177
-
dc.description.endpage
188
-
dc.relation.grantno
45285029
-
dc.relation.grantno
45284759
-
dc.relation.grantno
P 36870-N
-
dc.relation.grantno
Y 904-N31
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
Euro-Par 2023: Parallel Processing Workshops : Euro-Par 2023 International Workshops Limassol, Cyprus, August 28 – September 1, 2023 Revised Selected Papers, Part I
-
tuw.container.volume
14351
-
tuw.peerreviewed
true
-
tuw.relation.publisher
Springer
-
tuw.project.title
High-Performance integrated Quantum Computing
-
tuw.project.title
High‐Performance integrated Quantum Computing
-
tuw.project.title
Transprecise Edge Computing
-
tuw.project.title
Laufzeitkontrolle in Multi-Clouds
-
tuw.researchTopic.id
I4
-
tuw.researchTopic.name
Information Systems Engineering
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E194-04 - Forschungsbereich Data Science
-
tuw.publication.orgunit
E056-23 - Fachbereich Innovative Combinations and Applications of AI and ML (iCAIML)
-
tuw.publisher.doi
10.1007/978-3-031-50684-0_14
-
dc.description.numberOfPages
12
-
tuw.author.orcid
0009-0009-1858-2700
-
tuw.author.orcid
0000-0002-7352-3895
-
tuw.author.orcid
0009-0007-0661-5937
-
tuw.event.name
29th International European Conference on Parallel and Distributed Computing (Euro-Par 2023)
en
tuw.event.startdate
28-08-2023
-
tuw.event.enddate
01-09-2023
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Limassol
-
tuw.event.country
CY
-
tuw.event.presenter
Herbst, Sabrina
-
tuw.event.track
Multi Track
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Wirtschaftswissenschaften
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
5020
-
wb.sciencebranch.value
90
-
wb.sciencebranch.value
10
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.cerifentitytype
Publications
-
item.languageiso639-1
en
-
item.fulltext
no Fulltext
-
item.openairetype
conference paper
-
item.grantfulltext
none
-
crisitem.author.dept
E194-04 - Forschungsbereich Data Science
-
crisitem.author.dept
E194-04 - Forschungsbereich Data Science
-
crisitem.author.dept
E194-04 - Forschungsbereich Data Science
-
crisitem.author.orcid
0009-0009-1858-2700
-
crisitem.author.orcid
0000-0002-7352-3895
-
crisitem.author.orcid
0009-0007-0661-5937
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering
-
crisitem.project.funder
FFG - Österr. Forschungsförderungs- gesellschaft mbH
-
crisitem.project.funder
FFG - Österr. Forschungsförderungs- gesellschaft mbH