<div class="csl-bib-body">
<div class="csl-entry">Ilager, S., Balouek, D., Kaddour, S. M., & Brandic, I. (2024). Proteus: Towards Intent-driven Automated Resource Management Framework for Edge Sensor Nodes. In <i>FlexScience’24 : Proceedings of the 14th Workshop on AI and Scientific Computing at Scale using Flexible Computing Infrastructures</i> (pp. 1–8). Association for Computing Machinery. https://doi.org/10.1145/3659995.3660037</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/210967
-
dc.description.abstract
Edge computing provides critical resources for various latency-sensitive applications, including, safety-critical monitoring systems that process large volumes of data from sensors and IoT devices, employing machine learning pipelines for effective and reliable analysis. Such applications are deployed on specially designed Edge Sensor Nodes (ESNs) that possess various sensors and limited computing power and support multiple data analysis tasks. ESNs encounter unique operational challenges, including intermittent power supplies, limited connectivity, and dynamic application and resource requirements, which complicate runtime management. Conventional resource management platforms like Kubernetes and KubeEdge are unsuitable for the dynamic needs of ESNs due to their reliance on centralized control and expected stable conditions. To bridge this gap, our paper introduces a data-driven resource management framework tailored for the autonomous adaptation of ESNs to diverse application and infrastructure requirements. We propose an intent-based mechanism that aligns application requirements, such as end-to-end latency, with infrastructure goals like utilization levels. This mechanism translates high-level intents into actionable low-level configurations, balancing the competing demands of various applications and resources, thereby guiding us toward a more robust and efficient application management system. We have implemented a prototype system, evaluated it on an experimental testbed, and demonstrated that our approach performs better than static-only optimization approaches with minimal impact on application performance.
en
dc.description.sponsorship
FWF - Österr. Wissenschaftsfonds
-
dc.description.sponsorship
FWF - Österr. Wissenschaftsfonds
-
dc.description.sponsorship
FWF - Österr. Wissenschaftsfonds
-
dc.description.sponsorship
FFG - Österr. Forschungsförderungs- gesellschaft mbH
-
dc.language.iso
en
-
dc.subject
Automated Application Management
en
dc.subject
Edge Computing
en
dc.subject
Environmental Monitoring Applications
en
dc.subject
Intent-driven Resource Management
en
dc.subject
Internet of Things (IoT)
en
dc.title
Proteus: Towards Intent-driven Automated Resource Management Framework for Edge Sensor Nodes
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.relation.isbn
979-8-4007-0642-4
-
dc.description.startpage
1
-
dc.description.endpage
8
-
dc.relation.grantno
P 36870-N
-
dc.relation.grantno
PAT1668223
-
dc.relation.grantno
I 5201-N
-
dc.relation.grantno
FO999910946
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
FlexScience'24 : Proceedings of the 14th Workshop on AI and Scientific Computing at Scale using Flexible Computing Infrastructures
-
tuw.peerreviewed
true
-
tuw.relation.publisher
Association for Computing Machinery
-
tuw.relation.publisherplace
New York
-
tuw.project.title
Transprecise Edge Computing
-
tuw.project.title
Themis - Vertrauenswürdiges und nachhaltiges Code-Offloading
-
tuw.project.title
Nachhaltige Wasserwirtschaft durch IoT-gesteuerte KI
-
tuw.project.title
Virtual Shepherd
-
tuw.researchTopic.id
I4
-
tuw.researchTopic.name
Information Systems Engineering
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E194-04 - Forschungsbereich Data Science
-
tuw.publication.orgunit
E056-23 - Fachbereich Innovative Combinations and Applications of AI and ML (iCAIML)
-
tuw.publisher.doi
10.1145/3659995.3660037
-
dc.description.numberOfPages
8
-
tuw.author.orcid
0000-0003-1178-6582
-
tuw.author.orcid
0000-0001-6038-1077
-
tuw.author.orcid
0000-0002-2745-4024
-
tuw.author.orcid
0009-0007-0661-5937
-
tuw.event.name
14th Workshop on AI and Scientific Computing at Scale using Flexible Computing Infrastructures (FlexScience 2024)
en
tuw.event.startdate
03-06-2024
-
tuw.event.enddate
04-06-2024
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Pisa
-
tuw.event.country
IT
-
tuw.event.presenter
Ilager, Shashikant
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Wirtschaftswissenschaften
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
5020
-
wb.sciencebranch.value
90
-
wb.sciencebranch.value
10
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.cerifentitytype
Publications
-
item.languageiso639-1
en
-
item.fulltext
no Fulltext
-
item.openairetype
conference paper
-
item.grantfulltext
none
-
crisitem.author.dept
E194-04 - Forschungsbereich Data Science
-
crisitem.author.dept
E194-04 - Forschungsbereich Data Science
-
crisitem.author.orcid
0000-0003-1178-6582
-
crisitem.author.orcid
0000-0001-6038-1077
-
crisitem.author.orcid
0000-0002-2745-4024
-
crisitem.author.orcid
0009-0007-0661-5937
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering
-
crisitem.project.funder
FWF - Österr. Wissenschaftsfonds
-
crisitem.project.funder
FWF - Österr. Wissenschaftsfonds
-
crisitem.project.funder
FWF - Österr. Wissenschaftsfonds
-
crisitem.project.funder
FFG - Österr. Forschungsförderungs- gesellschaft mbH