<div class="csl-bib-body">
<div class="csl-entry">Paolino, R., Maskey, S., Welke, P., & Kutyniok, G. (2024). Weisfeiler and Leman Go Loopy: A New Hierarchy for Graph Representational Learning. In <i>Advances in Neural Information Processing Systems 37 (NeurIPS 2024)</i> (pp. 120780–120831). Curran Associates, Inc. http://hdl.handle.net/20.500.12708/211125</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/211125
-
dc.description.abstract
We introduce r-loopy Weisfeiler-Leman (r-ℓWL), a novel hierarchy of graph isomorphism tests and a corresponding GNN framework, r-ℓMPNN, that can count cycles up to length r+2. Most notably, we show that r-ℓWL can count homomorphisms of cactus graphs. This extends 1-WL, which can only count homomorphisms of trees and, in fact, is incomparable to k-WL for any fixed k. We empirically validate the expressive and counting power of r-ℓMPNN on several synthetic datasets and demonstrate the scalability and strong performance on various real-world datasets, particularly on sparse graphs.
en
dc.language.iso
en
-
dc.subject
Machine Learning
en
dc.subject
Graph Neural Networks
en
dc.subject
Weisfeiler-Leman (WL) Test
en
dc.subject
Theory and Expressivity in GNNs
en
dc.subject
Homomorphism Counting
en
dc.subject
Cactus Graphs
en
dc.title
Weisfeiler and Leman Go Loopy: A New Hierarchy for Graph Representational Learning
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.relation.publication
Advances in Neural Information Processing Systems 37 (NeurIPS 2024)
-
dc.contributor.affiliation
Ludwig-Maximilians-Universität München, Germany
-
dc.contributor.affiliation
Ludwig-Maximilians-Universität München, Germany
-
dc.contributor.affiliation
Ludwig-Maximilians-Universität München, Germany
-
dc.description.startpage
120780
-
dc.description.endpage
120831
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
Advances in Neural Information Processing Systems (NeurIPS 2024)
-
tuw.container.volume
37
-
tuw.peerreviewed
true
-
tuw.relation.publisher
Curran Associates, Inc.
-
tuw.researchTopic.id
I4
-
tuw.researchTopic.name
Information Systems Engineering
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E194-06 - Forschungsbereich Machine Learning
-
dc.description.numberOfPages
52
-
tuw.author.orcid
0000-0002-2123-3781
-
tuw.author.orcid
0000-0001-9738-2487
-
tuw.event.name
38th Annual Conference on Neural Information Processing Systems (NeurIPS 2024)
-
tuw.event.startdate
10-12-2024
-
tuw.event.enddate
15-12-2024
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Vancouver
-
tuw.event.country
CA
-
tuw.event.presenter
Paolino, Raffaele
-
tuw.event.track
Multi Track
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Wirtschaftswissenschaften
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
5020
-
wb.sciencebranch.value
90
-
wb.sciencebranch.value
10
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.openairetype
conference paper
-
item.fulltext
no Fulltext
-
item.languageiso639-1
en
-
item.grantfulltext
none
-
item.cerifentitytype
Publications
-
crisitem.author.dept
Ludwig-Maximilians-Universität München
-
crisitem.author.dept
Ludwig-Maximilians-Universität München
-
crisitem.author.dept
E194-06 - Forschungsbereich Machine Learning
-
crisitem.author.dept
Ludwig-Maximilians-Universität München
-
crisitem.author.orcid
0000-0002-2123-3781
-
crisitem.author.orcid
0000-0001-9738-2487
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering