<div class="csl-bib-body">
<div class="csl-entry">Kanatbekova, M., Ilager, S. S., & Brandic, I. (2024). <i>ABBA-VSM: Time Series Classification using Symbolic Representation on the Edge</i>. arXiv. https://doi.org/10.48550/arXiv.2410.10285</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/211308
-
dc.description.abstract
In recent years, Edge AI has become more prevalent with applications across various industries, from environmental monitoring to smart city management. Edge AI facilitates the processing of Internet of Things (IoT) data and provides privacy-enabled and latency-sensitive services to application users using Machine Learning (ML) algorithms, e.g., Time Series Classification (TSC). However, existing TSC algorithms require access to full raw data and demand substantial computing resources to train and use them effectively in runtime. This makes them impractical for deployment in resource-constrained Edge environments. To address this, in this paper, we propose an Adaptive Brownian Bridge-based Symbolic Aggregation Vector Space Model (ABBA-VSM). It is a new TSC model designed for classification services on Edge. Here, we first adaptively compress the raw time series into symbolic representations, thus capturing the changing trends of data. Subsequently, we train the classification model directly on these symbols. ABBA-VSM reduces communication data between IoT and Edge devices, as well as computation cycles, in the development of resource-efficient TSC services on Edge. We evaluate our solution with extensive experiments using datasets from the UCR time series classification archive. The results demonstrate that the ABBA-VSM achieves up to 80% compression ratio and 90-100% accuracy for binary classification. Whereas, for non-binary classification, it achieves an average compression ratio of 60% and accuracy ranging from 60-80%.
en
dc.description.sponsorship
FWF - Österr. Wissenschaftsfonds
-
dc.description.sponsorship
FWF - Österr. Wissenschaftsfonds
-
dc.description.sponsorship
FFG - Österr. Forschungsförderungs- gesellschaft mbH
-
dc.language.iso
en
-
dc.subject
Edge Computing
en
dc.subject
EdgeAI
en
dc.subject
Time Series Classification
en
dc.subject
Data Compression
en
dc.subject
Symbolic Representation
en
dc.title
ABBA-VSM: Time Series Classification using Symbolic Representation on the Edge
en
dc.type
Preprint
en
dc.type
Preprint
de
dc.identifier.arxiv
2410.10285
-
dc.relation.grantno
P 36870-N
-
dc.relation.grantno
PAT1668223
-
dc.relation.grantno
FO999910946
-
tuw.project.title
Transprecise Edge Computing
-
tuw.project.title
Themis - Vertrauenswürdiges und nachhaltiges Code-Offloading
-
tuw.project.title
Virtual Shepherd
-
tuw.researchTopic.id
I4
-
tuw.researchTopic.name
Information Systems Engineering
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E194-04 - Forschungsbereich Data Science
-
tuw.publication.orgunit
E056-23 - Fachbereich Innovative Combinations and Applications of AI and ML (iCAIML)
-
tuw.publisher.doi
10.48550/arXiv.2410.10285
-
dc.description.numberOfPages
15
-
tuw.author.orcid
0000-0003-1178-6582
-
tuw.author.orcid
0009-0007-0661-5937
-
tuw.publisher.server
arXiv
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Wirtschaftswissenschaften
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
5020
-
wb.sciencebranch.value
90
-
wb.sciencebranch.value
10
-
item.grantfulltext
none
-
item.languageiso639-1
en
-
item.fulltext
no Fulltext
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_816b
-
item.openairetype
preprint
-
crisitem.author.dept
E194-04 - Forschungsbereich Data Science
-
crisitem.author.dept
E194-04 - Forschungsbereich Data Science
-
crisitem.author.dept
E194-04 - Forschungsbereich Data Science
-
crisitem.author.orcid
0000-0003-1178-6582
-
crisitem.author.orcid
0009-0007-0661-5937
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering
-
crisitem.project.funder
FWF - Österr. Wissenschaftsfonds
-
crisitem.project.funder
FWF - Österr. Wissenschaftsfonds
-
crisitem.project.funder
FFG - Österr. Forschungsförderungs- gesellschaft mbH