<div class="csl-bib-body">
<div class="csl-entry">Ellmeyer, S., & Hofstätter, G. (2024). <i>Busemann-Petty type problems on complex vector spaces</i>. arXiv. https://doi.org/10.48550/arXiv.2404.05630</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/211346
-
dc.description.abstract
Busemann-Petty type problems for the recently introduced complex projection, centroid and Lp-intersection body operators are examined. Moreover, it is shown that, as their real counterparts, they can be linked to the spherical Fourier transform.
en
dc.description.sponsorship
FWF - Österr. Wissenschaftsfonds
-
dc.language.iso
en
-
dc.subject
Busemann-Petty problem
en
dc.subject
complex intersection body
en
dc.title
Busemann-Petty type problems on complex vector spaces
en
dc.type
Preprint
en
dc.type
Preprint
de
dc.identifier.arxiv
2404.05630
-
dc.relation.grantno
P 34446-N
-
tuw.project.title
Bewertungen auf konvexen Funktionen
-
tuw.researchTopic.id
A3
-
tuw.researchTopic.name
Fundamental Mathematics Research
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E104-06 - Forschungsbereich Konvexe und Diskrete Geometrie
-
tuw.publication.orgunit
E104-07 - Forschungsbereich Geometrische Analysis
-
tuw.publisher.doi
10.48550/arXiv.2404.05630
-
dc.description.numberOfPages
22
-
tuw.author.orcid
0000-0001-9199-7106
-
tuw.publisher.server
arXiv
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
100
-
item.languageiso639-1
en
-
item.grantfulltext
none
-
item.openairetype
preprint
-
item.openairecristype
http://purl.org/coar/resource_type/c_816b
-
item.cerifentitytype
Publications
-
item.fulltext
no Fulltext
-
crisitem.project.funder
FWF - Österr. Wissenschaftsfonds
-
crisitem.project.grantno
P 34446-N
-
crisitem.author.dept
E104-07 - Forschungsbereich Geometrische Analysis
-
crisitem.author.dept
E104-06 - Forschungsbereich Konvexe und Diskrete Geometrie
-
crisitem.author.orcid
0000-0001-9199-7106
-
crisitem.author.parentorg
E104 - Institut für Diskrete Mathematik und Geometrie
-
crisitem.author.parentorg
E104 - Institut für Diskrete Mathematik und Geometrie