<div class="csl-bib-body">
<div class="csl-entry">Bazhenov, N., Cipriani, V., Jain, S., San Mauro, L., & Stephan, F. (2024). <i>Classifying different criteria for learning algebraic structures</i>. http://hdl.handle.net/20.500.12708/211390</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/211390
-
dc.description.abstract
In the last years there has been a growing interest in the study of learning problems associated with algebraic structures. The framework we use models the scenario in which a learner is given larger and larger fragments of a structure from a given target family and is required to output an hypothesis about the structure's isomorphism type. So far researchers focused on Ex-learning, in which the learner is asked to eventually stabilize to the correct hypothesis, and on restrictions where the learner is allowed to change the hypothesis a fixed number of times. Yet, other learning paradigms coming from classical algorithmic learning theory remained unexplored. We study the "learning power" of such criteria, comparing them via descriptive-set-theoretic tools thanks to the novel notion of E-learnability. The main outcome of this paper is that such criteria admit natural syntactic characterizations in terms of infinitary formulas analogous to the one given for Ex-learning in [6]. Such characterizations give a powerful method to understand whether a family of structure is learnable with respect to the desired criterion.
en
dc.description.sponsorship
FWF - Österr. Wissenschaftsfonds
-
dc.language.iso
en
-
dc.subject
inductive inference
en
dc.subject
Algorithmic learning theory
en
dc.subject
Infinitary logic
en
dc.subject
Continuous reducibility
en
dc.title
Classifying different criteria for learning algebraic structures
en
dc.type
Preprint
en
dc.type
Preprint
de
dc.identifier.arxiv
2410.22933
-
dc.contributor.affiliation
University of Bari Aldo Moro, Italy
-
dc.contributor.affiliation
National University of Singapore, Singapore
-
dc.relation.grantno
P 36781-N
-
tuw.project.title
Strukturen durch Lernen Klassifizieren
-
tuw.researchTopic.id
C4
-
tuw.researchTopic.id
C5
-
tuw.researchTopic.name
Mathematical and Algorithmic Foundations
-
tuw.researchTopic.name
Computer Science Foundations
-
tuw.researchTopic.value
95
-
tuw.researchTopic.value
5
-
tuw.linking
https://arxiv.org/abs/2410.22933
-
tuw.publication.orgunit
E104-02 - Forschungsbereich Computational Logic
-
dc.description.numberOfPages
24
-
tuw.author.orcid
0000-0002-3156-6870
-
tuw.author.orcid
0000-0001-9152-1706
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
5
-
wb.sciencebranch.value
95
-
item.openairetype
preprint
-
item.cerifentitytype
Publications
-
item.grantfulltext
none
-
item.languageiso639-1
en
-
item.openairecristype
http://purl.org/coar/resource_type/c_816b
-
item.fulltext
no Fulltext
-
crisitem.project.funder
FWF - Österr. Wissenschaftsfonds
-
crisitem.project.grantno
P 36781-N
-
crisitem.author.dept
E104-02 - Forschungsbereich Computational Logic
-
crisitem.author.dept
University of Bari Aldo Moro
-
crisitem.author.dept
National University of Singapore
-
crisitem.author.orcid
0000-0002-3156-6870
-
crisitem.author.orcid
0000-0001-9152-1706
-
crisitem.author.parentorg
E104 - Institut für Diskrete Mathematik und Geometrie