<div class="csl-bib-body">
<div class="csl-entry">Besau, F., Gusakova, A., & Thäle, C. (2024). <i>Random polytopes in convex bodies: Bridging the gap between extremal containers</i>. arXiv. https://doi.org/10.48550/arXiv.2411.19163</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/211431
-
dc.description.abstract
We investigate the asymptotic properties of random polytopes arising as convex hulls of n independent random points sampled from a family of block-beta distributions. Notably, this family includes the uniform distribution on a product of Euclidean balls of varying dimensions as a key example. As n→∞, we establish explicit growth rates for the expected number of facets, which depend in a subtle way on the the underlying model parameters. For the case of the uniform distribution, we further examine the expected number of faces of arbitrary dimensions as well as the volume difference. Our findings reveal that the family of random polytopes we introduce exhibits novel interpolative properties, bridging the gap between the classical extremal cases observed in the behavior of random polytopes within smooth versus polytopal convex containers.
en
dc.language.iso
en
-
dc.subject
beta polytope
en
dc.subject
block-beta distribution
en
dc.subject
expected f-vector
en
dc.subject
expected volume difference
en
dc.subject
meta-cube
en
dc.subject
product body
en
dc.subject
random polytope
en
dc.title
Random polytopes in convex bodies: Bridging the gap between extremal containers
en
dc.type
Preprint
en
dc.type
Preprint
de
dc.identifier.arxiv
2411.19163
-
dc.contributor.affiliation
University of Münster, Germany
-
dc.contributor.affiliation
Ruhr University Bochum, Germany
-
tuw.researchTopic.id
A3
-
tuw.researchTopic.name
Fundamental Mathematics Research
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E104-06 - Forschungsbereich Konvexe und Diskrete Geometrie
-
tuw.publisher.doi
10.48550/arXiv.2411.19163
-
dc.description.numberOfPages
38
-
tuw.author.orcid
0000-0002-6596-6127
-
tuw.publisher.server
arXiv
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
100
-
item.openairecristype
http://purl.org/coar/resource_type/c_816b
-
item.openairetype
preprint
-
item.fulltext
no Fulltext
-
item.languageiso639-1
en
-
item.grantfulltext
none
-
item.cerifentitytype
Publications
-
crisitem.author.dept
E104 - Institut für Diskrete Mathematik und Geometrie