<div class="csl-bib-body">
<div class="csl-entry">Hofstätter, G. C., Kniefacz, P., & Schuster, F. (2024). <i>Affine Quermassintegrals and Even Minkowski Valuations</i>. arXiv. https://doi.org/10.48550/arXiv.2410.23720</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/211435
-
dc.description.abstract
It is shown that each continuous even Minkowski valuation on convex bodies of degree 1≤i≤n−1 intertwining rigid motions is obtained from convolution of the ith projection function with a unique spherical Crofton distribution. In case of a non-negative distribution, the polar volume of the associated Minkowski valuation gives rise to an isoperimetric inequality which strengthens the classical relation between the ith quermassintegral and the volume. This large family of inequalities unifies earlier results obtained for i=1 and n−1. In these cases, isoperimetric inequalities for affine quermassintegrals, specifically the Blaschke-Santaló inequality for i=1 and the Petty projection inequality for i=n−1, were proven to be the strongest inequalities. An analogous result for the intermediate degrees is established here. Finally, a new sufficient condition for the existence of maximizers for the polar volume of Minkowski valuations intertwining rigid motions reveals unexpected examples of volume inequalities having asymmetric extremizers.
en
dc.description.sponsorship
FWF - Österr. Wissenschaftsfonds
-
dc.description.sponsorship
FWF - Österr. Wissenschaftsfonds
-
dc.language.iso
en
-
dc.subject
affine quermassintegrals
en
dc.subject
Minkowski valuations
en
dc.title
Affine Quermassintegrals and Even Minkowski Valuations
en
dc.type
Preprint
en
dc.type
Preprint
de
dc.identifier.arxiv
2410.23720
-
dc.relation.grantno
P 34446-N
-
dc.relation.grantno
P31448-N35
-
tuw.project.title
Bewertungen auf konvexen Funktionen
-
tuw.project.title
Affine isoperimetrische Ungleichungen
-
tuw.researchTopic.id
A3
-
tuw.researchTopic.name
Fundamental Mathematics Research
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E104-06 - Forschungsbereich Konvexe und Diskrete Geometrie
-
tuw.publication.orgunit
E104-07 - Forschungsbereich Geometrische Analysis
-
tuw.publisher.doi
10.48550/arXiv.2410.23720
-
dc.description.numberOfPages
26
-
tuw.author.orcid
0000-0001-9199-7106
-
tuw.publisher.server
arXiv
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
100
-
item.languageiso639-1
en
-
item.openairetype
preprint
-
item.grantfulltext
none
-
item.fulltext
no Fulltext
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_816b
-
crisitem.author.dept
E104-06 - Forschungsbereich Konvexe und Diskrete Geometrie
-
crisitem.author.dept
E104-07 - Forschungsbereich Geometrische Analysis
-
crisitem.author.dept
E104-07 - Forschungsbereich Geometrische Analysis
-
crisitem.author.orcid
0000-0001-9199-7106
-
crisitem.author.parentorg
E104 - Institut für Diskrete Mathematik und Geometrie
-
crisitem.author.parentorg
E104 - Institut für Diskrete Mathematik und Geometrie
-
crisitem.author.parentorg
E104 - Institut für Diskrete Mathematik und Geometrie