<div class="csl-bib-body">
<div class="csl-entry">Colesanti, A., Knörr, J., & Pagnini, D. (2024). <i>The homogeneous decomposition of dually translation invariant valuations on Lipschitz functions on the sphere</i>. arXiv. https://doi.org/10.48550/arXiv.2401.05913</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/211436
-
dc.description.abstract
We show that every continuous and dually translation invariant valuation on the space of Lipschitz functions on the unit sphere of $\mathbb{R}^n$, $n\ge2$, can be decomposed uniquely into a sum of homogeneous valuations of degree $0$, $1$ and $2$. In particular, there does not exist any non-trivial, continuous and dually translation invariant valuation which is homogeneous of degree $3$ or higher. For the space of those of degree $0$, $1$ and $2$ we provide a description of a dense subspace.
en
dc.language.iso
en
-
dc.subject
valuation on functions
en
dc.subject
Lipschitz function
en
dc.title
The homogeneous decomposition of dually translation invariant valuations on Lipschitz functions on the sphere
en
dc.type
Preprint
en
dc.type
Preprint
de
dc.identifier.arxiv
2401.05913
-
dc.contributor.affiliation
University of Florence, Italy
-
tuw.researchTopic.id
C4
-
tuw.researchTopic.name
Mathematical and Algorithmic Foundations
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E104-07 - Forschungsbereich Geometrische Analysis
-
tuw.publisher.doi
10.48550/arXiv.2401.05913
-
dc.description.numberOfPages
40
-
tuw.author.orcid
0000-0002-7494-5205
-
tuw.publisher.server
arXiv
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
100
-
item.fulltext
no Fulltext
-
item.openairecristype
http://purl.org/coar/resource_type/c_816b
-
item.grantfulltext
none
-
item.cerifentitytype
Publications
-
item.languageiso639-1
en
-
item.openairetype
preprint
-
crisitem.author.dept
E104-07 - Forschungsbereich Geometrische Analysis
-
crisitem.author.dept
University of Florence
-
crisitem.author.orcid
0000-0002-7494-5205
-
crisitem.author.parentorg
E104 - Institut für Diskrete Mathematik und Geometrie