<div class="csl-bib-body">
<div class="csl-entry">Knörr, J. (2024). <i>A geometric decomposition for unitarily invariant valuations on convex functions</i>. arXiv. https://doi.org/10.48550/arXiv.2408.01352</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/211438
-
dc.description.abstract
Valuations on the space of finite-valued convex functions on ℂⁿ that are continuous, dually epi-translation invariant, as well as U(n)-invariant are completely classified. It is shown that the space of these valuations decomposes into a direct sum of subspaces defined in terms of vanishing properties with respect to restrictions to a finite family of special subspaces of ℂⁿ, mirroring the behavior of the Hermitian intrinsic volumes introduced by Bernig and Fu. Unique representations of these valuations in terms of principal value integrals involving two families of Monge-Ampère-type operators are established.
en
dc.language.iso
en
-
dc.subject
convex function
en
dc.subject
valuation on functions
en
dc.subject
Monge-Ampère operator
en
dc.title
A geometric decomposition for unitarily invariant valuations on convex functions
en
dc.type
Preprint
en
dc.type
Preprint
de
dc.identifier.arxiv
2408.01352
-
tuw.researchTopic.id
C4
-
tuw.researchTopic.name
Mathematical and Algorithmic Foundations
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E104-07 - Forschungsbereich Geometrische Analysis
-
tuw.publisher.doi
10.48550/arXiv.2408.01352
-
dc.description.numberOfPages
60
-
tuw.publisher.server
arXiv
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
100
-
item.grantfulltext
none
-
item.languageiso639-1
en
-
item.fulltext
no Fulltext
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_816b
-
item.openairetype
preprint
-
crisitem.author.dept
E104-07 - Forschungsbereich Geometrische Analysis
-
crisitem.author.parentorg
E104 - Institut für Diskrete Mathematik und Geometrie