<div class="csl-bib-body">
<div class="csl-entry">Knörr, J., & Ulivelli, J. (2024). <i>Polynomial valuations on convex functions and their maximal extensions</i>. arXiv. https://doi.org/10.48550/arXiv.2408.06946</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/211442
-
dc.description.abstract
Extension problems for polynomial valuations on different cones of convex functions are investigated. It is shown that for the classes of functions under consideration, the extension problem reduces to a simple geometric obstruction on the support of these valuations. The results rely on a homogeneous decomposition for the space of polynomial valuations of bounded degree and the support properties of certain distributions associated to the homogeneous components. As an application, an explicit integral representation for valuations of top degree is established.
en
dc.language.iso
en
-
dc.subject
convex function
en
dc.subject
convex body
en
dc.subject
valuation
en
dc.subject
extension
en
dc.subject
distribution
en
dc.title
Polynomial valuations on convex functions and their maximal extensions
en
dc.type
Preprint
en
dc.type
Preprint
de
dc.identifier.arxiv
2408.06946
-
tuw.researchTopic.id
C4
-
tuw.researchTopic.name
Mathematical and Algorithmic Foundations
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E104-06 - Forschungsbereich Konvexe und Diskrete Geometrie
-
tuw.publication.orgunit
E104-07 - Forschungsbereich Geometrische Analysis
-
tuw.publisher.doi
10.48550/arXiv.2408.06946
-
dc.description.numberOfPages
32
-
tuw.author.orcid
0000-0002-4726-5271
-
tuw.publisher.server
arXiv
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
100
-
item.grantfulltext
none
-
item.languageiso639-1
en
-
item.fulltext
no Fulltext
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_816b
-
item.openairetype
preprint
-
crisitem.author.dept
E104-07 - Forschungsbereich Geometrische Analysis
-
crisitem.author.dept
E104-06 - Forschungsbereich Konvexe und Diskrete Geometrie
-
crisitem.author.orcid
0000-0002-4726-5271
-
crisitem.author.parentorg
E104 - Institut für Diskrete Mathematik und Geometrie
-
crisitem.author.parentorg
E104 - Institut für Diskrete Mathematik und Geometrie