<div class="csl-bib-body">
<div class="csl-entry">Furutanpey, A., Frangoudis, P., Szabo, P., & Dustdar, S. (2024). <i>Adversarial Robustness of Bottleneck Injected Deep Neural Networks for Task-Oriented Communication</i>. arXiv. https://doi.org/10.34726/8679</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/211524
-
dc.identifier.uri
https://doi.org/10.34726/8679
-
dc.description.abstract
This paper investigates the adversarial robustness of Deep Neural Networks (DNNs) using Information Bottleneck (IB) objectives for task-oriented communication systems. We empirically demonstrate that while IB-based approaches provide baseline resilience against attacks targeting downstream tasks, the reliance on generative models for task-oriented communication introduces new vulnerabilities. Through extensive experiments on several datasets, we analyze how bottleneck depth and task complexity influence adversarial robustness. Our key findings show that Shallow Variational Bottleneck Injection (SVBI) provides less adversarial robustness compared to Deep Variational Information Bottleneck (DVIB) approaches, with the gap widening for more complex tasks. Additionally, we reveal that IB-based objectives exhibit stronger robustness against attacks focusing on salient pixels with high intensity compared to those perturbing many pixels with lower intensity. Lastly, we demonstrate that task-oriented communication systems that rely on generative models to extract and recover salient information have an increased attack surface. The results highlight important security considerations for next-generation communication systems that leverage neural networks for goal-oriented compression.
en
dc.language.iso
en
-
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
-
dc.subject
Task-Oriented Communication
en
dc.subject
Goal-Oriented Compression
en
dc.subject
Adversarial Machine Learning
en
dc.subject
Information Bottleneck
en
dc.title
Adversarial Robustness of Bottleneck Injected Deep Neural Networks for Task-Oriented Communication
en
dc.type
Preprint
en
dc.type
Preprint
de
dc.rights.license
Creative Commons Namensnennung 4.0 International
de
dc.rights.license
Creative Commons Attribution 4.0 International
en
dc.identifier.doi
10.34726/8679
-
dc.identifier.arxiv
arXiv:2412.10265
-
dc.contributor.affiliation
TU Wien, Austria
-
tuw.researchTopic.id
I4
-
tuw.researchTopic.name
Information Systems Engineering
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E194-02 - Forschungsbereich Distributed Systems
-
tuw.publisher.doi
10.48550/ARXIV.2412.10265
-
dc.identifier.libraryid
AC17432010
-
dc.description.numberOfPages
6
-
tuw.author.orcid
0000-0001-5621-7899
-
tuw.author.orcid
0000-0001-6901-7714
-
tuw.author.orcid
0000-0001-6872-8821
-
dc.rights.identifier
CC BY 4.0
de
dc.rights.identifier
CC BY 4.0
en
tuw.publisher.server
arXiv
-
wb.sciencebranch
Informatik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.value
100
-
item.openairecristype
http://purl.org/coar/resource_type/c_816b
-
item.openaccessfulltext
Open Access
-
item.openairetype
preprint
-
item.fulltext
with Fulltext
-
item.mimetype
application/pdf
-
item.languageiso639-1
en
-
item.grantfulltext
open
-
item.cerifentitytype
Publications
-
crisitem.author.dept
E194-02 - Forschungsbereich Distributed Systems
-
crisitem.author.dept
E194-02 - Forschungsbereich Distributed Systems
-
crisitem.author.dept
TU Wien
-
crisitem.author.dept
E194-02 - Forschungsbereich Distributed Systems
-
crisitem.author.orcid
0000-0001-5621-7899
-
crisitem.author.orcid
0000-0001-6901-7714
-
crisitem.author.orcid
0000-0001-6872-8821
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering