<div class="csl-bib-body">
<div class="csl-entry">Herbst, S., Cranganore, S. S., De Maio, V., & Brandic, I. (2024). <i>Exploring Channel Distinguishability in Local Neighborhoods of the Model Space in Quantum Neural Networks</i>. arXiv. https://doi.org/10.48550/arXiv.2410.09470</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/211525
-
dc.description.abstract
With the increasing interest in Quantum Machine Learning, Quantum Neural Networks (QNNs) have emerged and gained significant attention. These models have, however, been shown to be notoriously difficult to train, which we hypothesize is partially due to the architectures, called ansatzes, that are hardly studied at this point. Therefore, in this paper, we take a step back and analyze ansatzes. We initially consider their expressivity, i.e., the space of operations they are able to express, and show that the closeness to being a 2-design, the primarily used measure, fails at capturing this property. Hence, we look for alternative ways to characterize ansatzes by considering the local neighborhood of the model space, in particular, analyzing model distinguishability upon small perturbation of parameters. We derive an upper bound on their distinguishability, showcasing that QNNs with few parameters are hardly discriminable upon update. Our numerical experiments support our bounds and further indicate that there is a significant degree of variability, which stresses the need for warm-starting or clever initialization. Altogether, our work provides an ansatz-centric perspective on training dynamics and difficulties in QNNs, ultimately suggesting that iterative training of small quantum models may not be effective, which contrasts their initial motivation.
en
dc.description.sponsorship
FWF - Österr. Wissenschaftsfonds
-
dc.description.sponsorship
FWF - Österr. Wissenschaftsfonds
-
dc.description.sponsorship
FFG - Österr. Forschungsförderungs- gesellschaft mbH
-
dc.language.iso
en
-
dc.subject
Quantum Machine Learning
en
dc.subject
Quantum Neural Networks (QNNs)
en
dc.subject
model space
en
dc.title
Exploring Channel Distinguishability in Local Neighborhoods of the Model Space in Quantum Neural Networks
en
dc.type
Preprint
en
dc.type
Preprint
de
dc.identifier.arxiv
2410.09470
-
dc.relation.grantno
P 36870-N
-
dc.relation.grantno
PAT1668223
-
dc.relation.grantno
45285029
-
tuw.project.title
Transprecise Edge Computing
-
tuw.project.title
Themis - Vertrauenswürdiges und nachhaltiges Code-Offloading
-
tuw.project.title
High-Performance integrated Quantum Computing
-
tuw.researchTopic.id
I4
-
tuw.researchTopic.id
Q2
-
tuw.researchTopic.name
Information Systems Engineering
-
tuw.researchTopic.name
Quantum Metrology and Precision Measurements
-
tuw.researchTopic.value
70
-
tuw.researchTopic.value
30
-
tuw.publication.orgunit
E194-04 - Forschungsbereich Data Science
-
tuw.publication.orgunit
E056-23 - Fachbereich Innovative Combinations and Applications of AI and ML (iCAIML)
-
tuw.publisher.doi
10.48550/arXiv.2410.09470
-
dc.description.numberOfPages
15
-
tuw.author.orcid
0009-0009-1858-2700
-
tuw.author.orcid
0000-0002-7352-3895
-
tuw.author.orcid
0009-0007-0661-5937
-
tuw.publisher.server
arXiv
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Wirtschaftswissenschaften
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
5020
-
wb.sciencebranch.value
90
-
wb.sciencebranch.value
10
-
item.openairecristype
http://purl.org/coar/resource_type/c_816b
-
item.fulltext
no Fulltext
-
item.openairetype
preprint
-
item.cerifentitytype
Publications
-
item.languageiso639-1
en
-
item.grantfulltext
none
-
crisitem.author.dept
E194-04 - Forschungsbereich Data Science
-
crisitem.author.dept
E141-04 - Forschungsbereich Neutron- and Quantum Physics
-
crisitem.author.dept
E194-04 - Forschungsbereich Data Science
-
crisitem.author.dept
E194-04 - Forschungsbereich Data Science
-
crisitem.author.orcid
0009-0009-1858-2700
-
crisitem.author.orcid
0000-0002-7352-3895
-
crisitem.author.orcid
0009-0007-0661-5937
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering
-
crisitem.author.parentorg
E141 - Atominstitut
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering
-
crisitem.project.funder
FWF - Österr. Wissenschaftsfonds
-
crisitem.project.funder
FWF - Österr. Wissenschaftsfonds
-
crisitem.project.funder
FFG - Österr. Forschungsförderungs- gesellschaft mbH