<div class="csl-bib-body">
<div class="csl-entry">Herbst, S., De Maio, V., & Brandic, I. (2024). <i>On Optimizing Hyperparameters for Quantum Neural Networks</i>. arXiv. https://doi.org/10.48550/arXiv.2403.18579</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/211526
-
dc.description.abstract
The increasing capabilities of Machine Learning (ML) models go hand in hand with an immense amount of data and computational power required for training. Therefore, training is usually outsourced into HPC facilities, where we have started to experience limits in scaling conventional HPC hardware, as theorized by Moore's law. Despite heavy parallelization and optimization efforts, current state-of-the-art ML models require weeks for training, which is associated with an enormous CO2 footprint. Quantum Computing, and specifically Quantum Machine Learning (QML), can offer significant theoretical speed-ups and enhanced expressive power. However, training QML models requires tuning various hyperparameters, which is a nontrivial task and suboptimal choices can highly affect the trainability and performance of the models. In this study, we identify the most impactful hyperparameters and collect data about the performance of QML models. We compare different configurations and provide researchers with performance data and concrete suggestions for hyperparameter selection.
en
dc.description.sponsorship
FWF - Österr. Wissenschaftsfonds
-
dc.description.sponsorship
FFG - Österr. Forschungsförderungs- gesellschaft mbH
-
dc.description.sponsorship
FFG - Österr. Forschungsförderungs- gesellschaft mbH
-
dc.language.iso
en
-
dc.subject
Machine Learning (ML)
en
dc.subject
Quantum Machine Learning (QML)
en
dc.subject
CO2 footprint
en
dc.subject
HPC Hardware
en
dc.title
On Optimizing Hyperparameters for Quantum Neural Networks
en
dc.type
Preprint
en
dc.type
Preprint
de
dc.identifier.arxiv
2403.18579
-
dc.relation.grantno
P 36870-N
-
dc.relation.grantno
45285029
-
dc.relation.grantno
45284759
-
tuw.project.title
Transprecise Edge Computing
-
tuw.project.title
High-Performance integrated Quantum Computing
-
tuw.project.title
High‐Performance integrated Quantum Computing
-
tuw.researchTopic.id
Q3
-
tuw.researchTopic.id
E6
-
tuw.researchTopic.id
I4
-
tuw.researchTopic.name
Quantum Modeling and Simulation
-
tuw.researchTopic.name
Sustainable Production and Technologies
-
tuw.researchTopic.name
Information Systems Engineering
-
tuw.researchTopic.value
20
-
tuw.researchTopic.value
10
-
tuw.researchTopic.value
70
-
tuw.publication.orgunit
E194-04 - Forschungsbereich Data Science
-
tuw.publication.orgunit
E056-23 - Fachbereich Innovative Combinations and Applications of AI and ML (iCAIML)
-
tuw.publisher.doi
10.48550/arXiv.2403.18579
-
dc.description.numberOfPages
21
-
tuw.author.orcid
0009-0009-1858-2700
-
tuw.author.orcid
0000-0002-7352-3895
-
tuw.author.orcid
0009-0007-0661-5937
-
tuw.publisher.server
arXiv
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Wirtschaftswissenschaften
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
5020
-
wb.sciencebranch.value
90
-
wb.sciencebranch.value
10
-
item.openairecristype
http://purl.org/coar/resource_type/c_816b
-
item.fulltext
no Fulltext
-
item.openairetype
preprint
-
item.cerifentitytype
Publications
-
item.languageiso639-1
en
-
item.grantfulltext
none
-
crisitem.author.dept
E194-04 - Forschungsbereich Data Science
-
crisitem.author.dept
E194-04 - Forschungsbereich Data Science
-
crisitem.author.dept
E194-04 - Forschungsbereich Data Science
-
crisitem.author.orcid
0009-0009-1858-2700
-
crisitem.author.orcid
0000-0002-7352-3895
-
crisitem.author.orcid
0009-0007-0661-5937
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering
-
crisitem.project.funder
FWF - Österr. Wissenschaftsfonds
-
crisitem.project.funder
FFG - Österr. Forschungsförderungs- gesellschaft mbH
-
crisitem.project.funder
FFG - Österr. Forschungsförderungs- gesellschaft mbH