<div class="csl-bib-body">
<div class="csl-entry">Hliněný, P., & Khazaliya, L. (2024). <i>Crossing Number is NP-hard for Constant Path-width (and Tree-width)</i>. arXiv. https://doi.org/10.48550/arXiv.2406.18933</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/211527
-
dc.description.abstract
Crossing Number is a celebrated problem in graph drawing. It is known to be NP-complete since 1980s, and fairly involved techniques were already required to show its fixed-parameter tractability when parameterized by the vertex cover number. In this paper we prove that computing exactly the crossing number is NP-hard even for graphs of path-width 12 (and as a result, even of tree-width 9). Thus, while tree-width and path-width have been very successful tools in many graph algorithm scenarios, our result shows that general crossing number computations unlikely (under P!=NP) could be successfully tackled using bounded width of graph decompositions, which has been a 'tantalizing open problem' [S. Cabello, Hardness of Approximation for Crossing Number, 2013] till now.
en
dc.language.iso
en
-
dc.subject
Graph Drawing
en
dc.subject
Crossing Number
en
dc.subject
Tree-width
en
dc.subject
Path-width
en
dc.title
Crossing Number is NP-hard for Constant Path-width (and Tree-width)
en
dc.type
Preprint
en
dc.type
Preprint
de
dc.identifier.arxiv
2406.18933
-
dc.contributor.affiliation
Masaryk University, Czech Republic
-
tuw.researchTopic.id
I1
-
tuw.researchTopic.name
Logic and Computation
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E192-01 - Forschungsbereich Algorithms and Complexity
-
tuw.publisher.doi
10.48550/arXiv.2406.18933
-
dc.description.numberOfPages
17
-
tuw.author.orcid
0009-0002-3012-7240
-
tuw.publisher.server
arXiv
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
80
-
wb.sciencebranch.value
20
-
item.openairecristype
http://purl.org/coar/resource_type/c_816b
-
item.fulltext
no Fulltext
-
item.openairetype
preprint
-
item.cerifentitytype
Publications
-
item.languageiso639-1
en
-
item.grantfulltext
none
-
crisitem.author.dept
Masaryk University, Czech Republic
-
crisitem.author.dept
E192-01 - Forschungsbereich Algorithms and Complexity