<div class="csl-bib-body">
<div class="csl-entry">Schmidbauer, A., Baltzaki, M. C. I., Markovic, M., Slezak, P., Redl, H., & Baudis, S. (2024). Human Platelet Lysate-functionalized Hydrogels - A Novel Solution for Bone Regeneration. In <i>Advanced Functional Polymers for Medicine (AFPM)</i> (pp. 35–35). http://hdl.handle.net/20.500.12708/211537</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/211537
-
dc.description.abstract
Introduction
Critical-size bone defects challenge bone regeneration, impacting healing and functional outcomes. Bone implants address these issues, but ttheir bio integration is complicated by increased defect sizes and their impact on biological processes, such as the transport of vital nutrients, and cell ingrowth.[1] This study focused on the development of bio-functionalised hydrogels based on modified Human Platelet Lysate (PL), which could potentially improve osseointegration of 3D-printed bone scaffolds.
Experimental Methods
After the modification of PL with photopolymerizable groups (i.e. allyl glycidyl ether (PLAGE)), the novel material was crosslinked using photopolymerization and its properties were compared to similar gelatin systems. Extensive in situ photorheology, swelling tests and in vitro studies enabled detailed characterization of the hydrogels. Preliminary in vivo tests also provided insight on the hydrogel’s performance in the living organism.
Results and Discussion
Various photocrosslinkable PL alternatives were synthesized and subsequently crosslinked. Crosslinking photopolymerizable motifs in the material's modified backbone allowed for the improvement of the unmodified lysates' poor mechanical properties. Noteworthy, hydrogel formation was observed in presence and in absence of thiols. Thiol groups in the protein backbone enhanced gel formation in PL, which is primarily based on serum albumin and has cysteine as its most prevalent amino acid. Since this project was focused on the development of hydrogels which may help artificial bone scaffolds produced by 3D printing integrate better, the material’s applicability in Tissue Engineering & Regenerative Medicine was investigated. An in vivo pilot test on dorsal subcutaneous mouse model was conducted for the most promising PL-based hydrogels, to evaluate the acute response, grade of inflammation, and degradation.
Conclusions
A promising versatile PL-based hydrogel platform was established for potentially improved osseointegration of artificial bone implants. Different crosslinking approaches were evaluated and the resulting mechanical properties were screened. By altering the parameters, a promising system for 3D biofabrication can be developed. Overall, this novel material platform exhibited promising results for bone tissue engineering.
en
dc.description.sponsorship
Christian Doppler Forschungsgesells
-
dc.language.iso
en
-
dc.subject
hydrogels
en
dc.subject
platelet lysate
en
dc.subject
biomaterials
en
dc.subject
tissue regeneration
en
dc.title
Human Platelet Lysate-functionalized Hydrogels - A Novel Solution for Bone Regeneration
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.contributor.affiliation
Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Austria
-
dc.contributor.affiliation
Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Austria
-
dc.description.startpage
35
-
dc.description.endpage
35
-
dc.relation.grantno
CDL Baudis
-
dc.type.category
Poster Contribution
-
tuw.booktitle
Advanced Functional Polymers for Medicine (AFPM)
-
tuw.project.title
Christian Doppler Labor für Fortschrittliche Polymere für Biomaterialien und den 3D Druck
-
tuw.researchTopic.id
M2
-
tuw.researchTopic.id
M6
-
tuw.researchTopic.id
M4
-
tuw.researchTopic.name
Materials Characterization
-
tuw.researchTopic.name
Biological and Bioactive Materials
-
tuw.researchTopic.name
Non-metallic Materials
-
tuw.researchTopic.value
50
-
tuw.researchTopic.value
30
-
tuw.researchTopic.value
20
-
tuw.publication.orgunit
E163-02-1 - Forschungsgruppe Polymerchemie und Technologie
-
tuw.publication.orgunit
E308-02-3 - Forschungsgruppe 3D Printing and Biofabrication
-
dc.description.numberOfPages
1
-
tuw.author.orcid
0000-0002-3392-5806
-
tuw.author.orcid
0000-0003-4121-2731
-
tuw.author.orcid
0000-0001-8984-5672
-
tuw.author.orcid
0000-0002-1000-4393
-
tuw.author.orcid
0000-0003-1654-462X
-
tuw.author.orcid
0000-0002-5390-0761
-
tuw.event.name
Advanced Functional Polymers for Medicine (AFPM)
en
dc.description.sponsorshipexternal
Bundesministerium für Digitalisierung und Wirtschaftsstandort
-
dc.description.sponsorshipexternal
Nationalstiftung für Forschung, Technologie und Entwicklung
-
tuw.event.startdate
05-06-2024
-
tuw.event.enddate
07-06-2024
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Utrecht
-
tuw.event.country
NL
-
tuw.event.presenter
Baltzaki, Maria Chrysi Izampella
-
wb.sciencebranch
Chemie
-
wb.sciencebranch
Chemische Verfahrenstechnik
-
wb.sciencebranch
Pharmazie, Pharmakologie, Toxikologie
-
wb.sciencebranch.oefos
1040
-
wb.sciencebranch.oefos
2040
-
wb.sciencebranch.oefos
3012
-
wb.sciencebranch.value
60
-
wb.sciencebranch.value
20
-
wb.sciencebranch.value
20
-
item.openairecristype
http://purl.org/coar/resource_type/c_6670
-
item.languageiso639-1
en
-
item.fulltext
no Fulltext
-
item.grantfulltext
restricted
-
item.openairetype
conference poster
-
item.cerifentitytype
Publications
-
crisitem.project.funder
Christian Doppler Forschungsgesells
-
crisitem.project.grantno
CDL Baudis
-
crisitem.author.dept
E163-02-1 - Forschungsgruppe Polymerchemie und Technologie
-
crisitem.author.dept
E163-02-1 - Forschungsgruppe Polymerchemie und Technologie
-
crisitem.author.dept
E308-50-2 - Fachgruppe Technische Assistenz
-
crisitem.author.dept
Ludwig Boltzmann Institute for Experimental and Clinical Traumatology
-
crisitem.author.dept
Ludwig Boltzmann Institute for Experimental and Clinical Traumatology
-
crisitem.author.dept
E163-02-1 - Forschungsgruppe Polymerchemie und Technologie