<div class="csl-bib-body">
<div class="csl-entry">Oelerich, T., Hartl-Nesic, C., & Kugi, A. (2024). Model Predictive Trajectory Planning for Human-Robot Handovers. In <i>Tagungsband der VDI Mechatroniktagung Dresden 2024</i> (pp. 65–70).</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/211675
-
dc.description
Preprint zum Konferenzbeitrag auf arXiv Open Access veröffentlicht: https://doi.org/10.48550/arXiv.2404.07505
-
dc.description.abstract
This work develops a novel trajectory planner for human-robot handovers. The handover requirements can naturally be handled by a path-following-based model predictive controller, where the path progress serves as a progress measure of the handover. Moreover, the deviations from the path are used to follow human motion by adapting the path deviation bounds with a handover location prediction. A Gaussian process regression model, which is trained on known handover trajectories, is employed for this prediction. Experiments with a collaborative 7-DoF robotic manipulator show the effectiveness and versatility of the proposed approach.
en
dc.language.iso
en
-
dc.subject
model predictive trajectory planning
en
dc.subject
human-robot handovers
en
dc.subject
MPC
en
dc.title
Model Predictive Trajectory Planning for Human-Robot Handovers