<div class="csl-bib-body">
<div class="csl-entry">Oguamalam, J., Filzmoser, P., Hron, K., Menafoglio, A., & Radojicic, U. (2024). <i>Robust functional PCA for density data</i>. arXiv. https://doi.org/10.34726/8739</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/211944
-
dc.identifier.uri
https://doi.org/10.34726/8739
-
dc.description.abstract
This paper introduces a robust approach to functional principal component analysis (FPCA) for compositional data, particularly density functions. While recent papers have studied density data within the Bayes space framework, there has been limited focus on developing robust methods to effectively handle anomalous observations and large noise. To address this, we extend the Mahalanobis distance concept to Bayes spaces, proposing its regularized version that accounts for the constraints inherent in density data. Based on this extension, we introduce a new method, robust density principal component analysis (RDPCA), for more accurate estimation of functional principal components in the presence of outliers. The method's performance is validated through simulations and real-world applications, showing its ability to improve covariance estimation and principal component analysis compared to traditional methods.
en
dc.description.sponsorship
FWF - Österr. Wissenschaftsfonds
-
dc.language.iso
en
-
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
-
dc.subject
Relative data
en
dc.subject
Bayes spaces
en
dc.subject
Robust principal component analysis
en
dc.subject
Functional data analysis
en
dc.title
Robust functional PCA for density data
-
dc.type
Preprint
en
dc.type
Preprint
de
dc.rights.license
Creative Commons Namensnennung 4.0 International
de
dc.rights.license
Creative Commons Attribution 4.0 International
en
dc.identifier.doi
10.34726/8739
-
dc.identifier.arxiv
2412.19004
-
dc.contributor.affiliation
Palacký University Olomouc, Czechia
-
dc.contributor.affiliation
Politecnico di Milano, Italy
-
dc.relation.grantno
I 5799-N
-
tuw.project.title
Generalisierte relative Daten und Robustheit in Bayes Räumen