<div class="csl-bib-body">
<div class="csl-entry">Filipovic, L., Reiter, T., Piso, J., & Kostal, R. (2024). Equipment-Informed Machine Learning-Assisted Feature-Scale Plasma Etching Model. In <i>2024 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)</i> (pp. 1–4). https://doi.org/10.1109/SISPAD62626.2024.10733099</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/212138
-
dc.description.abstract
We investigate means to merge feature-scale and reactor-scale models during plasma etching using Machine Learning (ML) and interpolative approaches. First, we test the SF6 plasma etching models based on a small dataset from literature. We find that Gaussian Process Regression (GPR) leads to significant over-fitting, resulting in waviness in the predicted values in the range where no data is available. A Neural Network (NN) model was likewise implemented with rectified linear unit activation. This model provides linear prediction between known values, resulting in a better qualitative fit to experimental observations. Finally, we perform 18 750 chamber simulations of a C12/Ar plasma while varying relevant input parameters. The data is used to build a six-dimensional spline-based inerpolative model of the chamber and provide a means to quickly extract relevant fluxes for the feature-scale model.
en
dc.description.sponsorship
Christian Doppler Forschungsgesells
-
dc.language.iso
en
-
dc.subject
Gaussian process regression
en
dc.subject
interpolation
en
dc.subject
machine learning
en
dc.subject
neural net-works
en
dc.subject
plasma etching
en
dc.subject
process simulation
en
dc.title
Equipment-Informed Machine Learning-Assisted Feature-Scale Plasma Etching Model
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.contributor.affiliation
TU Wien, Austria
-
dc.relation.isbn
979-8-3315-1635-2
-
dc.relation.doi
10.1109/SISPAD62626.2024
-
dc.description.startpage
1
-
dc.description.endpage
4
-
dc.relation.grantno
00000
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
2024 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)
-
tuw.peerreviewed
true
-
tuw.project.title
Multi-Scale-Prozessmodellierung von Halbleiter-Bauelemente und -Sensoren
-
tuw.researchTopic.id
I6
-
tuw.researchTopic.id
C6
-
tuw.researchTopic.name
Digital Transformation in Manufacturing
-
tuw.researchTopic.name
Modeling and Simulation
-
tuw.researchTopic.value
50
-
tuw.researchTopic.value
50
-
tuw.publication.orgunit
E360-01 - Forschungsbereich Mikroelektronik
-
tuw.publication.orgunit
E056-04 - Fachbereich TU-DX: Towards Applications of 2D Materials
-
tuw.publisher.doi
10.1109/SISPAD62626.2024.10733099
-
dc.description.numberOfPages
4
-
tuw.author.orcid
0000-0003-1687-5058
-
tuw.author.orcid
0000-0002-5638-9129
-
tuw.event.name
2024 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)