<div class="csl-bib-body">
<div class="csl-entry">Bartocci, E., Mariani, L., Ničković, D., & Yadav, D. (2025). Signal Feature Coverage and Testing for CPS Dataflow Models. <i>ACM Transactions on Software Engineering and Methodology</i>. https://doi.org/10.1145/3714467</div>
</div>
-
dc.identifier.issn
1049-331X
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/212424
-
dc.description.abstract
Design of cyber-physical systems (CPS) typically involves dataflow modelling. The structure of dataflow models differs from the traditional software, making standard coverage metrics not appropriate for measuring the thoroughness of testing. To address this limitation, this paper proposes signal feature coverage as a new coverage metric for systematically testing CPS dataflow models. We derive signal feature coverage by leveraging signal features. We developed a testing framework in Simulink®, a popular dataflow modelling and simulation environment, that automates the generation and execution of test cases based on the defined coverage metric. We evaluated the effectiveness of our approach by carrying out experiments on five Simulink®models tested against ten Signal Temporal Logic specifications. We compared our coverage-based testing approach to adaptive random testing, falsification testing, output diversity-based approaches, and testing using MathWorks’ Simulink® Design Verifier™. The results demonstrate that our coverage-based testing approach outperforms the conventional techniques regarding fault detection capability.
en
dc.language.iso
en
-
dc.publisher
ASSOC COMPUTING MACHINERY
-
dc.relation.ispartof
ACM Transactions on Software Engineering and Methodology
-
dc.subject
Cyber-Physical Systems
en
dc.subject
Simulink models
en
dc.subject
Coverage criteria
en
dc.subject
Testing
en
dc.subject
Signal Temporal Logic (STL)
en
dc.title
Signal Feature Coverage and Testing for CPS Dataflow Models
en
dc.type
Article
en
dc.type
Artikel
de
dc.contributor.affiliation
University of Milano-Bicocca, Italy
-
dc.contributor.affiliation
Austrian Institute of Technology, Austria
-
dc.type.category
Original Research Article
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
wb.publication.intCoWork
International Co-publication
-
tuw.researchTopic.id
I1
-
tuw.researchTopic.id
I2
-
tuw.researchTopic.id
C6
-
tuw.researchTopic.name
Logic and Computation
-
tuw.researchTopic.name
Computer Engineering and Software-Intensive Systems
-
tuw.researchTopic.name
Modeling and Simulation
-
tuw.researchTopic.value
20
-
tuw.researchTopic.value
70
-
tuw.researchTopic.value
10
-
dcterms.isPartOf.title
ACM Transactions on Software Engineering and Methodology
-
tuw.publication.orgunit
E191-01 - Forschungsbereich Cyber-Physical Systems
-
tuw.publisher.doi
10.1145/3714467
-
dc.date.onlinefirst
2025-01-22
-
dc.identifier.eissn
1557-7392
-
dc.description.numberOfPages
37
-
tuw.author.orcid
0000-0002-8004-6601
-
tuw.author.orcid
0000-0001-9527-7042
-
tuw.author.orcid
0000-0001-5468-0396
-
tuw.author.orcid
0000-0002-2974-0323
-
dc.description.sponsorshipexternal
Engineered MachinE Learning-intensive IoT systems (EMELIOT) national research project, which has been funded by the MUR under the PRIN 2020 program
-
dc.relation.grantnoexternal
Contract 2020W3A5FY
-
wb.sci
true
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Elektrotechnik, Elektronik, Informationstechnik
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
2020
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
70
-
wb.sciencebranch.value
20
-
wb.sciencebranch.value
10
-
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
item.openairetype
research article
-
item.fulltext
no Fulltext
-
item.languageiso639-1
en
-
item.grantfulltext
none
-
item.cerifentitytype
Publications
-
crisitem.author.dept
E191-01 - Forschungsbereich Cyber-Physical Systems
-
crisitem.author.dept
University of Milano-Bicocca
-
crisitem.author.dept
Austrian Institute of Technology
-
crisitem.author.dept
E191-01 - Forschungsbereich Cyber-Physical Systems