<div class="csl-bib-body">
<div class="csl-entry">Alkhoury, F., & Welke, P. (2025). Splitting Stump Forests: Tree Ensemble Compression for Edge Devices. In D. Pedreschi, A. Monreale, R. Guidotti, R. Pellungrini, & F. Naretto (Eds.), <i>Discovery Science: 27th International Conference, DS 2024 Pisa, Italy, October 14–16, 2024 Proceedings, Part II</i> (pp. 3–18). Springer Nature. https://doi.org/10.34726/8839</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/212560
-
dc.identifier.uri
https://doi.org/10.34726/8839
-
dc.description.abstract
We introduce Splitting Stump Forests – small ensembles of weak learners extracted from a trained random forest. The high memory consumption of random forest ensemble models renders them unfit for resource-constrained devices. We show empirically that we can significantly reduce the model size and inference time by selecting nodes that evenly split the arriving training data and applying a linear model on the resulting representation. Our extensive empirical evaluation indicates that Splitting Stump Forests outperform random forests and state-of-the-art compression methods on memory-limited embedded devices.
en
dc.description.sponsorship
WWTF Wiener Wissenschafts-, Forschu und Technologiefonds
-
dc.language.iso
en
-
dc.relation.ispartofseries
Lecture Notes in Computer Science
-
dc.rights.uri
http://rightsstatements.org/vocab/InC/1.0/
-
dc.subject
Ensemble Compression
en
dc.subject
Random Forests
en
dc.subject
Edge Devices
en
dc.title
Splitting Stump Forests: Tree Ensemble Compression for Edge Devices