<div class="csl-bib-body">
<div class="csl-entry">Breuss, D., Götzinger, M., Vuong, J., Reisner, C., & Jantsch, A. (2023). VADAR: A Vision-based Anomaly Detection Algorithm for Railroads. In <i>2023 26th Euromicro Conference on Digital System Design (DSD)</i> (pp. 130–137). IEEE. https://doi.org/10.1109/DSD60849.2023.00028</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/212705
-
dc.description.abstract
Detecting damages and anomalies on railroads is a tedious and expensive task. This paper proposes the Vision-based Anomaly Detection Algorithm for Railroads (VADAR), which can find rail damages and foreign objects on the trackbed in monochrome images captured by a train-mounted camera system. VADAR analyzes the input image with three Autoencoders (AEs), a segmentation network, and a one-class classifier. The detection of unknown anomalies justifies our architecture’s advantage, i.e., no anomalies are necessary for training VADAR. In experiments with a dataset of over 218,000 images, VADAR achieves a detection accuracy of 95% and a recall rate of 70% for smaller and up to 100% for bigger instances of several anomaly classes. Compared with a state-of-the-art approach which is based on more expensive equipment, VADAR achieves accuracy and recall rates (for anomalies of particular interest) of about 22pps and up to 45pps higher, respectively. With a setting that achieves 83.5% accuracy, VADAR’s recall rate outperforms the state-of-the-art approach for every anomaly class and object size.
en
dc.description.sponsorship
FFG - Österr. Forschungsförderungs- gesellschaft mbH
-
dc.language.iso
en
-
dc.subject
Railroad
en
dc.subject
Vision-Based
en
dc.subject
Anomaly Detection
en
dc.subject
Unknown Anomalies
en
dc.subject
Autoencoder
en
dc.title
VADAR: A Vision-based Anomaly Detection Algorithm for Railroads
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.contributor.affiliation
Mission Embedded, Austria
-
dc.contributor.affiliation
Mission Embedded, Austria
-
dc.relation.isbn
979-8-3503-4419-6
-
dc.relation.doi
10.1109/DSD60849.2023.00007
-
dc.relation.issn
2771-2508
-
dc.description.startpage
130
-
dc.description.endpage
137
-
dc.relation.grantno
880842
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
2023 26th Euromicro Conference on Digital System Design (DSD)
-
tuw.peerreviewed
true
-
tuw.relation.publisher
IEEE
-
tuw.relation.publisherplace
Piscataway
-
tuw.project.title
Human-Assisted Real-time MONitoring of infrastructure and obstacles from railwaY vehicles
-
tuw.researchinfrastructure
Vienna Scientific Cluster
-
tuw.researchTopic.id
I5
-
tuw.researchTopic.id
I2
-
tuw.researchTopic.id
C5
-
tuw.researchTopic.name
Visual Computing and Human-Centered Technology
-
tuw.researchTopic.name
Computer Engineering and Software-Intensive Systems
-
tuw.researchTopic.name
Computer Science Foundations
-
tuw.researchTopic.value
50
-
tuw.researchTopic.value
25
-
tuw.researchTopic.value
25
-
tuw.publication.orgunit
E384-02 - Forschungsbereich Systems on Chip
-
tuw.publication.orgunit
E056-10 - Fachbereich SecInt-Secure and Intelligent Human-Centric Digital Technologies
-
tuw.publication.orgunit
E056-16 - Fachbereich SafeSeclab
-
tuw.publisher.doi
10.1109/DSD60849.2023.00028
-
dc.description.numberOfPages
8
-
tuw.author.orcid
0009-0000-0989-4272
-
tuw.author.orcid
0000-0003-2251-0004
-
tuw.event.name
2023 26th Euromicro Conference on Digital System Design (DSD)