<div class="csl-bib-body">
<div class="csl-entry">Lechner, M., & Jantsch, A. (2025). OptiSim: A Hardware-Aware Optimization Space Exploration Tool for CNN Architectures. In R. Meo & F. Silvestri (Eds.), <i>Machine Learning and Principles and Practice of Knowledge Discovery in Databases : International Workshops of ECML PKDD 2023, Turin, Italy, September 18–22, 2023, Revised Selected Papers, Part V</i> (pp. 170–182). Springer. https://doi.org/10.1007/978-3-031-74643-7_14</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/212706
-
dc.description.abstract
Enabled by the substantial increases in computational power and efficiency of embedded devices and accelerators for Deep Neural Networks, machine learning has become a key component in many edge computing applications. Due to these increased hardware capabilities and the steadily rising accuracy requirements, the complexity of neural networks has also stepped up to a point where network optimizations are crucial to meet latency targets in complex applications.
In this work, we present OptiSim, a method to estimate the impact of DNN optimization strategies like pruning and shunt connections on inference latency. It uses characterizations of State-of-the-Art optimization algorithms to simulate the effect on the network structure and to provide latency estimations for various degrees of model compression. OptiSim considers the platform-specific properties embedded in the latency estimation models to find optimal layer sizes improving the hardware utilization. Our tool can quickly evaluate and compare large amounts of network optimizations without the need to build time-consuming execution engines.
In experiments, we achieved an error of 7.04\% \gls{rmspe} in latency estimation when comparing the target latency with the latency reached when running the optimization algorithms with the estimated compression factors. Compared to the traditional, manual workflow where developers have to guess the required compression factors, the automated approach of OptiSim saves valuable time for deployment.
en
dc.description.sponsorship
Christian Doppler Forschungsgesells
-
dc.language.iso
en
-
dc.subject
Machine Learning
en
dc.subject
Neural Networks
en
dc.subject
Estimation
en
dc.subject
Pruning
en
dc.title
OptiSim: A Hardware-Aware Optimization Space Exploration Tool for CNN Architectures
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.relation.isbn
978-3-031-74643-7
-
dc.relation.doi
10.1007/978-3-031-74643-7
-
dc.relation.issn
1865-0929
-
dc.description.startpage
170
-
dc.description.endpage
182
-
dc.relation.grantno
123456
-
dc.type.category
Full-Paper Contribution
-
dc.relation.eissn
1865-0937
-
tuw.booktitle
Machine Learning and Principles and Practice of Knowledge Discovery in Databases : International Workshops of ECML PKDD 2023, Turin, Italy, September 18–22, 2023, Revised Selected Papers, Part V
-
tuw.container.volume
2137
-
tuw.peerreviewed
true
-
tuw.book.ispartofseries
Communications in Computer and Information Science
-
tuw.relation.publisher
Springer
-
tuw.relation.publisherplace
Cham
-
tuw.project.title
CDL Embedded Machine Learning
-
tuw.researchTopic.id
I2
-
tuw.researchTopic.id
C5
-
tuw.researchTopic.id
I3
-
tuw.researchTopic.name
Computer Engineering and Software-Intensive Systems
-
tuw.researchTopic.name
Computer Science Foundations
-
tuw.researchTopic.name
Automation and Robotics
-
tuw.researchTopic.value
65
-
tuw.researchTopic.value
25
-
tuw.researchTopic.value
10
-
tuw.publication.orgunit
E384-02 - Forschungsbereich Systems on Chip
-
tuw.publication.orgunit
E056-10 - Fachbereich SecInt-Secure and Intelligent Human-Centric Digital Technologies