<div class="csl-bib-body">
<div class="csl-entry">Huang, Y., Chen, Z., Meindlhumer, M., Hahn, R., Holec, D., Leiner, T., Maier-Kiener, V., Zheng, Y., Zhang, Z., Hatzenbichler, L., Riedl, H., Mitterer, C., & Zhang, Z. (2025). Harvesting superior intrinsic plasticity in nitride ceramics with negative stacking fault energy. <i>Acta Materialia</i>, <i>286</i>, Article 120774. https://doi.org/10.1016/j.actamat.2025.120774</div>
</div>
-
dc.identifier.issn
1359-6454
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/212758
-
dc.description.abstract
Ceramics face an everlasting challenge from their intrinsic brittleness at room temperature, which can lead to early-stage catastrophic failures. The fatal disadvantage primarily results from the high critical-resolved shear stress required to initiate dislocation movement and the limited number of operational slip systems. Here, we propose a new strategy for designing deformable ceramics by negative stacking fault energy (SFE), which realizes energetic barrier reduction of dislocation motion and slip system expansion. This way, we harvested a superior room-temperature compressive plasticity in TiN/TaN superlattice by successive and extensive atomic plane faulting and twinning. This strategy sheds light on the design of intrinsically ductile ceramics.
en
dc.description.sponsorship
Christian Doppler Forschungsgesells
-
dc.language.iso
en
-
dc.publisher
PERGAMON-ELSEVIER SCIENCE LTD
-
dc.relation.ispartof
Acta Materialia
-
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
-
dc.subject
Deformation
en
dc.subject
dislocation
en
dc.subject
Plasticity
en
dc.subject
Transition-metal-nitride
en
dc.subject
Transmission electron microscopy
en
dc.title
Harvesting superior intrinsic plasticity in nitride ceramics with negative stacking fault energy