<div class="csl-bib-body">
<div class="csl-entry">Bittner, M., Hinterreiter, A., Eckelt, K., & Streit, M. (2025). Explainable Long and Short-Term Pattern Detection in Projected Sequential Data. In R. Meo & F. Silvestri (Eds.), <i>Machine Learning and Principles and Practice of Knowledge Discovery in Databases</i> (pp. 53–68). https://doi.org/10.1007/978-3-031-74633-8_4</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/212984
-
dc.description.abstract
Combining explainable artificial intelligence and information visualization holds great potential for users to understand and reason about complex multidimensional sequential data. This work proposes a semi-supervised two-step approach for extracting long- and shortterm patterns in low-dimensional representations of sequential data. First, unsupervised sequence clustering is used to identify long-term patterns. Second, these long-term patterns serve as supervisory information for training a self-attention-based sequence classification model. The resulting feature embedding is used to identify short-term patterns. The approach is validated on a self-generated dataset consisting of heartshaped paths with different sampling rates, rotations, scales, and translations.
The results demonstrate the approach’s effectiveness for clustering semantically similar paths and/or path sequences. This detection of both global long-term patterns and local short-term patterns facilitates the understanding and reasoning about complex multidimensional
sequential data.
en
dc.description.sponsorship
Christian Doppler Forschungsgesells
-
dc.language.iso
en
-
dc.relation.ispartofseries
Communications in Computer and Information Science
-
dc.subject
pattern-detection
en
dc.subject
projected paths
en
dc.subject
self-attention
en
dc.title
Explainable Long and Short-Term Pattern Detection in Projected Sequential Data
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.contributor.editoraffiliation
Sapienza University of Rome, Italy
-
dc.relation.isbn
978-3-031-74633-8
-
dc.description.startpage
53
-
dc.description.endpage
68
-
dc.relation.grantno
123456
-
dc.rights.holder
The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
R. Meo and F. Silvestri (Eds.): ECML PKDD 2023, CCIS 2135, pp. 53–68, 2025.
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
Machine Learning and Principles and Practice of Knowledge Discovery in Databases
-
tuw.container.volume
2135
-
tuw.peerreviewed
true
-
tuw.project.title
CDL Embedded Machine Learning
-
tuw.researchTopic.id
I5
-
tuw.researchTopic.name
Visual Computing and Human-Centered Technology
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E384-02 - Forschungsbereich Systems on Chip
-
tuw.publisher.doi
10.1007/978-3-031-74633-8_4
-
dc.description.numberOfPages
16
-
tuw.author.orcid
0009-0004-8022-2232
-
tuw.author.orcid
0000-0003-4101-5180
-
tuw.author.orcid
0000-0001-6832-9070
-
tuw.author.orcid
0000-0001-9186-2092
-
tuw.editor.orcid
0000-0002-0434-4850
-
tuw.editor.orcid
0000-0001-7669-9055
-
tuw.event.name
European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases