<div class="csl-bib-body">
<div class="csl-entry">Karkulik, M., Melenk, J. M., & Rieder, A. (2023). <i>On interpolation spaces of piecewise polynomials on mixed meshes</i>. arXiv. https://doi.org/10.48550/arXiv.2306.16907</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/213027
-
dc.description.abstract
We consider fractional Sobolev spaces Hθ, θ∈(0,1), on 2D domains and H1-conforming discretizations by globally continuous piecewise polynomials on a mesh consisting of shape-regular triangles and quadrilaterals. We prove that the norm obtained from interpolating between the discrete space equipped with the L2-norm on the one hand and the H1-norm on the other hand is equivalent to the corresponding continuous interpolation Sobolev norm, and the norm-equivalence constants are independent of meshsize and polynomial degree. This characterization of the Sobolev norm is then used to show an inverse inequality between H1 and Hθ.
en
dc.language.iso
en
-
dc.subject
Inverse estimates
en
dc.subject
interpolation spaces
en
dc.subject
stable localization
en
dc.subject
domain decomposition
en
dc.title
On interpolation spaces of piecewise polynomials on mixed meshes