<div class="csl-bib-body">
<div class="csl-entry">Wagner, W., Bauer-Marschallinger, B., Roth, F., Stachl, T., Reimer, C., McCormick, N., Matgen, P., Chini, M., Li, Y., Martinis, S., Wieland, M., Kraft, F., Festa, D., Hassaan, M. A. S. A., Tupas, M. E., Zhao, J., Seewald, M., Riffler, M., Molini, L., … Salamon, P. (2025). <i>The Fully-Automatic Sentinel-1 Global Flood Monitoring Service: Scientific Challenges and Future Directions</i>. Social Science Research Network (SSRN). https://doi.org/10.34726/8899</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/213255
-
dc.identifier.uri
https://doi.org/10.34726/8899
-
dc.description.abstract
One of the critical factors in operational satellite-based flood monitoring efforts is the time it takes from the acquisition of the satellite image to the delivery of the flood maps to users. Any human involvement, such as coordinating satellite acquisitions or manually interpreting images, can delay this process. To avoid such delays, a fundamentally new approach was adopted for the Sentinel-1 based Global Flood Monitoring (GFM) service: All Synthetic Aperture Radar (SAR) images acquired by the Sentinel-1 satellites in VV polarisation over land are processed entirely automatically, enabling flood maps to be delivered within eight hours of acquisition. The flood maps, along with a novel flood likelihood layer, are generated using ensemble approaches that integrate three complementary flood mapping algorithms along with reference water maps to distinguish flooded areas from permanent and seasonal
water bodies. A notable feature of the service is its capability not only to depict flood-pixels evident in the Sentinel-1 images but also to provide contextual information that identifies areas where flood mapping is not feasible or
problematic due to land cover and environmental conditions. These advancements were made possible through the use of a global 20 m backscatter datacube, which has enabled the characterisation of the backscatter behaviour
for approximately 379 billion land surface pixels and deriving the reference water maps and a global flood archive. The GFM service was launched in 2021 as a new component of the Copernicus Emergency Management Service
(CEMS) and has quickly garnered attention from users worldwide. In this review, we offer the first comprehensive overview of the scientific accomplishments and challenges faced during the first three years of operations. This
analysis discloses discrepancies between the current service capabilities and the requirements of operational users, and provides directions for future research and service improvements, anticipating the increasing availability of
systematic SAR data coverage from ROSE-L and other future SAR missions.
en
dc.description.sponsorship
FFG - Österr. Forschungsförderungs- gesellschaft mbH
-
dc.language.iso
en
-
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
-
dc.subject
Flood monitoring
en
dc.subject
Inland water
en
dc.subject
Sentinel-1
en
dc.subject
SAR
en
dc.subject
Datacube
en
dc.subject
Copernicus
en
dc.title
The Fully-Automatic Sentinel-1 Global Flood Monitoring Service: Scientific Challenges and Future Directions
en
dc.type
Preprint
en
dc.type
Preprint
de
dc.rights.license
Creative Commons Namensnennung 4.0 International
de
dc.rights.license
Creative Commons Attribution 4.0 International
en
dc.identifier.doi
10.34726/8899
-
dc.contributor.affiliation
ODC Earth Observation Data Centre, Austria
-
dc.contributor.affiliation
ODC Earth Observation Data Centre, Austria
-
dc.contributor.affiliation
Joint Research Centre, Italy
-
dc.contributor.affiliation
Luxembourg Institute of Science and Technology, Luxembourg
-
dc.contributor.affiliation
Luxembourg Institute of Science and Technology, Luxembourg
-
dc.contributor.affiliation
Deutsches Zentrum für Luft- und Raumfahrt e. V. (DLR), Germany
-
dc.contributor.affiliation
Deutsches Zentrum für Luft- und Raumfahrt e. V. (DLR), Germany
-
dc.contributor.affiliation
Deutsches Zentrum für Luft- und Raumfahrt e. V. (DLR), Germany
-
dc.contributor.affiliation
University of the Philippines Diliman, Philippines (the)
-
dc.contributor.affiliation
GeoVille (Austria), Austria
-
dc.contributor.affiliation
GeoVille (Austria), Austria
-
dc.contributor.affiliation
CIMA Research Foundation, Italy
-
dc.contributor.affiliation
Joint Research Centre, Italy
-
dc.relation.grantno
-
-
tuw.project.title
Preparing for Scaling Up Flood Monitoring Capabilities with ROSE-L and Sentinel-1 NG
-
tuw.researchTopic.id
E4
-
tuw.researchTopic.name
Environmental Monitoring and Climate Adaptation
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E120-01 - Forschungsbereich Fernerkundung
-
tuw.publisher.doi
10.2139/ssrn.5110703
-
dc.identifier.libraryid
AC17468309
-
dc.description.numberOfPages
76
-
tuw.author.orcid
0000-0001-7704-6857
-
tuw.author.orcid
0000-0001-7356-7516
-
tuw.author.orcid
0000-0002-1155-723X
-
tuw.author.orcid
0009-0001-3956-2233
-
tuw.author.orcid
0000-0002-8227-5299
-
tuw.author.orcid
0000-0002-9638-3792
-
tuw.author.orcid
0009-0009-8034-0542
-
tuw.author.orcid
0000-0002-5419-5398
-
dc.rights.identifier
CC BY 4.0
de
dc.rights.identifier
CC BY 4.0
en
dc.description.sponsorshipexternal
European Commission
-
dc.relation.grantnoexternal
939866-IPR-2020
-
tuw.publisher.server
Social Science Research Network (SSRN)
-
wb.sciencebranch
Geodäsie, Vermessungswesen
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Physische Geographie
-
wb.sciencebranch.oefos
2074
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
1054
-
wb.sciencebranch.value
70
-
wb.sciencebranch.value
15
-
wb.sciencebranch.value
15
-
item.mimetype
application/pdf
-
item.grantfulltext
open
-
item.fulltext
with Fulltext
-
item.openaccessfulltext
Open Access
-
item.languageiso639-1
en
-
item.openairecristype
http://purl.org/coar/resource_type/c_816b
-
item.openairetype
preprint
-
item.cerifentitytype
Publications
-
crisitem.project.funder
FFG - Österr. Forschungsförderungs- gesellschaft mbH