<div class="csl-bib-body">
<div class="csl-entry">Liu, W., Alsalehi, S., Mehdipour, N., Bartocci, E., & Belta, C. (2025). Quantifying the Satisfaction of Spatio-Temporal Logic Specifications for Multi-Agent Control. <i>IEEE Transactions on Automatic Control</i>, 1–16. https://doi.org/10.1109/TAC.2025.3538747</div>
</div>
-
dc.identifier.issn
0018-9286
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/213272
-
dc.description.abstract
In this paper, we study control synthesis problems for multi-agent systems (MAS) that must comply with spatio-temporal logic requirements. We define a logic called team Spatio-Temporal Reach and Escape Logic (t-STREL) and a robustness metric for it that is continuous everywhere and differentiable almost everywhere. These properties facilitate the use of gradient-based optimization and learning-based control techniques, offering greater efficiency compared to traditional gradient-free methods. We propose three approaches leveraging these robustness properties to control the MAS. The first combines a gradient-based optimization algorithm with a heuristic one (hybrid optimization). The second uses imitation learning to learn a Recurrent Neural Network (RNN) controller from a dataset generated by off-line optimizations. The third approach employs a model-based policy search algorithm to learn an RNN controller directly without a dataset. We showcase our proposed approaches in a simulated example. We demonstrate that, with hybrid optimization, the MAS can achieve a high success rate of compliance with the t-STREL requirement, while the imitation learning approach can be used for real-time control. The model-based policy search approach can concurrently achieve both objectives within a relatively short training time.
en
dc.language.iso
en
-
dc.publisher
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
-
dc.relation.ispartof
IEEE Transactions on Automatic Control
-
dc.subject
Spatio-temporal Logic
en
dc.subject
Multi-agent systems
en
dc.subject
Control Syntheis
en
dc.title
Quantifying the Satisfaction of Spatio-Temporal Logic Specifications for Multi-Agent Control
en
dc.type
Article
en
dc.type
Artikel
de
dc.contributor.affiliation
Boston University, USA
-
dc.contributor.affiliation
Boston University
-
dc.contributor.affiliation
Motional, Boston, MA, USA
-
dc.contributor.affiliation
University of Maryland, Baltimore, United States of America (the)
-
dc.description.startpage
1
-
dc.description.endpage
16
-
dc.type.category
Original Research Article
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
wb.publication.intCoWork
International Co-publication
-
tuw.researchTopic.id
I2
-
tuw.researchTopic.name
Computer Engineering and Software-Intensive Systems
-
tuw.researchTopic.value
100
-
dcterms.isPartOf.title
IEEE Transactions on Automatic Control
-
tuw.publication.orgunit
E191-01 - Forschungsbereich Cyber-Physical Systems
-
tuw.publication.orgunit
E056-17 - Fachbereich Trustworthy Autonomous Cyber-Physical Systems
-
tuw.publisher.doi
10.1109/TAC.2025.3538747
-
dc.date.onlinefirst
2025-02-04
-
dc.identifier.eissn
1558-2523
-
dc.description.numberOfPages
16
-
tuw.author.orcid
0000-0003-2132-8710
-
tuw.author.orcid
0000-0002-8409-2234
-
tuw.author.orcid
0000-0002-6537-5626
-
tuw.author.orcid
0000-0002-8004-6601
-
tuw.author.orcid
0000-0002-7141-2657
-
wb.sci
true
-
wb.sciencebranch
Informatik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.value
100
-
item.grantfulltext
none
-
item.fulltext
no Fulltext
-
item.languageiso639-1
en
-
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
item.openairetype
research article
-
item.cerifentitytype
Publications
-
crisitem.author.dept
Boston University, USA
-
crisitem.author.dept
Boston University
-
crisitem.author.dept
Motional, Boston, MA, USA
-
crisitem.author.dept
E191-01 - Forschungsbereich Cyber-Physical Systems