<div class="csl-bib-body">
<div class="csl-entry">Mouamine, M. A., & Mußnig, F. (2025). <i>A Klain-Schneider Theorem for Vector-Valued Valuations on Convex Functions</i>. arXiv. https://doi.org/10.48550/arXiv.2503.07287</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/213671
-
dc.description.abstract
A functional analog of the Klain-Schneider theorem for vector-valued valuations on convex functions is established, providing a classification of continuous, translation covariant, simple valuations. Under additional rotation equivariance assumptions, an analytic counterpart of the moment vector is characterized alongside a new epi-translation invariant valuation. The former arises as the top-degree operator in a family of functional intrinsic moments, which are linked to functional intrinsic volumes through translations. The latter represents the top-degree operator in a class of Minkowski vectors, which are introduced in this article and which lack classical counterparts on convex bodies, as they vanish due to the Minkowski relations. Additional classification results are obtained for homogeneous valuations of extremal degrees.
en
dc.description.sponsorship
FWF - Österr. Wissenschaftsfonds
-
dc.language.iso
en
-
dc.subject
valuation
en
dc.subject
convex function
en
dc.subject
simple
en
dc.subject
moment vector
en
dc.subject
intrinsic moment
en
dc.subject
Minkowski vector
en
dc.title
A Klain-Schneider Theorem for Vector-Valued Valuations on Convex Functions
en
dc.type
Preprint
en
dc.type
Preprint
de
dc.identifier.arxiv
2503.07287
-
dc.relation.grantno
P 36210
-
tuw.project.title
Integralgeometrie auf konvexen Funktionen
-
tuw.researchTopic.id
A3
-
tuw.researchTopic.name
Fundamental Mathematics Research
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E104-06 - Forschungsbereich Konvexe und Diskrete Geometrie
-
tuw.publisher.doi
10.48550/arXiv.2503.07287
-
dc.description.numberOfPages
19
-
tuw.author.orcid
0000-0003-2012-1590
-
tuw.publisher.server
arXiv
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
100
-
item.languageiso639-1
en
-
item.openairetype
preprint
-
item.grantfulltext
none
-
item.fulltext
no Fulltext
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_816b
-
crisitem.author.dept
E104-06 - Forschungsbereich Konvexe und Diskrete Geometrie
-
crisitem.author.dept
E104-06 - Forschungsbereich Konvexe und Diskrete Geometrie
-
crisitem.author.orcid
0000-0003-2012-1590
-
crisitem.author.parentorg
E104 - Institut für Diskrete Mathematik und Geometrie
-
crisitem.author.parentorg
E104 - Institut für Diskrete Mathematik und Geometrie