<div class="csl-bib-body">
<div class="csl-entry">Holzinger, C., & Semlitsch, B. (2024). Modelling Leading Edge Erosion of Wind Turbine Blades. In <i>The 8th International Conference on Jets, Wakes and Separated Flows, ICJWSF-2024</i>. 8th International Conference on Jets, Wakes and Separated Flows, ICJWSF-2024, Firenze, Italy. http://hdl.handle.net/20.500.12708/213679</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/213679
-
dc.description.abstract
Wind turbines have substantially contributed to sustainable energy transitions over the last two decades, harvesting renewable energy. The installed wind turbine rotor blades are exposed to all weather conditions throughout their lifetime, wearing down the surfaces, especially the leading edges. The increased surface roughness amplifies the drag forces and, hence, decreases the aerodynamic performance. Forecasting models are needed to evaluate the economic benefit of repair realistically for certain erosion states of wind turbine blades. Although numerous methodologies exist for loss prediction due to surface roughness, the development and validation of such models are needed. Therefore, we establish numerical flow simulation methodologies to predict torque losses for eroded (below mesh resolution) and severely damaged (of the order of the mesh resolution) wind turbine wings. While severe damages, such as delamination, can be described by the computational mesh, the required roughness representation at the subgrid-scale is performed using the amplification roughness model. Being an extension of the Langtry-Menter γ-Reθt turbulence model, the amplification roughness model can handle the transition prediction between laminar and turbulent flow regimes even for rough surfaces. The reliability of the suggested methodologies is validated by two-dimensional test cases from literature for representative airfoils and erosion states.
en
dc.language.iso
en
-
dc.subject
Wind energy
en
dc.subject
Surface erosion
en
dc.subject
Flow separation
en
dc.subject
Numerical flow simulation
en
dc.subject
Turbulence modelling
en
dc.title
Modelling Leading Edge Erosion of Wind Turbine Blades
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.contributor.affiliation
TU Wien, Austria
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
The 8th International Conference on Jets, Wakes and Separated Flows, ICJWSF-2024
-
tuw.researchinfrastructure
Vienna Scientific Cluster
-
tuw.researchTopic.id
C2
-
tuw.researchTopic.id
C6
-
tuw.researchTopic.name
Computational Fluid Dynamics
-
tuw.researchTopic.name
Modeling and Simulation
-
tuw.researchTopic.value
70
-
tuw.researchTopic.value
30
-
tuw.publication.orgunit
E302-02 - Forschungsbereich Strömungsmaschinen
-
dc.description.numberOfPages
6
-
tuw.author.orcid
0000-0001-7715-863X
-
tuw.event.name
8th International Conference on Jets, Wakes and Separated Flows, ICJWSF-2024
en
tuw.event.startdate
23-09-2024
-
tuw.event.enddate
25-09-2024
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Firenze
-
tuw.event.country
IT
-
tuw.event.presenter
Semlitsch, Bernhard
-
wb.sciencebranch
Chemische Verfahrenstechnik
-
wb.sciencebranch
Maschinenbau
-
wb.sciencebranch.oefos
2040
-
wb.sciencebranch.oefos
2030
-
wb.sciencebranch.value
30
-
wb.sciencebranch.value
70
-
item.cerifentitytype
Publications
-
item.languageiso639-1
en
-
item.fulltext
no Fulltext
-
item.openairetype
conference paper
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.grantfulltext
restricted
-
crisitem.author.dept
E302-02 - Forschungsbereich Strömungsmaschinen
-
crisitem.author.dept
E302-02 - Forschungsbereich Strömungsmaschinen
-
crisitem.author.orcid
0000-0001-7715-863X
-
crisitem.author.parentorg
E302 - Institut für Energietechnik und Thermodynamik
-
crisitem.author.parentorg
E302 - Institut für Energietechnik und Thermodynamik