<div class="csl-bib-body">
<div class="csl-entry">Edthofer, A., & Korner, A. (2025). Identifying EEG-based Functional Networks for Whole-Brain Models. <i>IFAC-PapersOnLine</i>, <i>59</i>(1), 301–306. https://doi.org/10.1016/j.ifacol.2025.03.052</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/213845
-
dc.description.abstract
Brain activity differs according to the state of consciousness. Whole-brain models, typically based on functional magnetic resonance imaging (fMRI) data, provide valuable insight into these changes by utilizing structural connectivity and differential equations to model the functional connectivity between brain regions. The goal of this work is to adapt fMRI-based functional connectivity models to electroencephalography data. A key step in this process is to determine the number of clusters and to estimate the coupling parameters. We turn to amplitude envelope correlation, a time-domain measure, to better match functional connectivity patterns observed in fMRI. By analyzing 64-channel electroencephalogram data from 25 male subjects over the age of 60 from the AlphaMax study, we investigate wakefulness and the transition to unconsciousness under anesthesia. Using A;-means clustering, we identify optimal brain network configurations, focusing on whether they match known fMRI-based networks. Clustering is evaluated using the Calinski-Harabasz criterion for different thresholds and numbers of cluster. The results show that two clusters are predominantly optimal for both awake and the mixed half awake, half unconscious scenario. Misplaced electrodes are mainly found in parietal regions. Since we determined the number of differential equations, this work lays the foundation for further development of electroencephalography-based whole-brain models that can track functional connectivity changes during anesthesia.
en
dc.language.iso
en
-
dc.publisher
International Federation of Automatic Control ; Elsevier
-
dc.relation.ispartof
IFAC-PapersOnLine
-
dc.subject
Electroencephalogram
en
dc.subject
Functional Connectivity
en
dc.subject
Amplitude Envelope Correlation
en
dc.subject
Whole-Brain Model
en
dc.subject
Monitoring
en
dc.subject
Biomedical System Modeling
en
dc.subject
Neuro-Systems
en
dc.subject
Clustering
en
dc.title
Identifying EEG-based Functional Networks for Whole-Brain Models
en
dc.type
Article
en
dc.type
Artikel
de
dc.description.startpage
301
-
dc.description.endpage
306
-
dc.type.category
Original Research Article
-
tuw.container.volume
59
-
tuw.container.issue
1
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
tuw.researchTopic.id
C6
-
tuw.researchTopic.name
Modeling and Simulation
-
tuw.researchTopic.value
100
-
dcterms.isPartOf.title
IFAC-PapersOnLine
-
tuw.publication.orgunit
E101-03-3 - Forschungsgruppe Mathematik in Simulation und Ausbildung
-
tuw.publisher.doi
10.1016/j.ifacol.2025.03.052
-
dc.identifier.eissn
2405-8963
-
dc.description.numberOfPages
6
-
tuw.author.orcid
0000-0002-5669-705X
-
tuw.author.orcid
0000-0001-7116-1707
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
100
-
item.languageiso639-1
en
-
item.openairetype
research article
-
item.grantfulltext
none
-
item.fulltext
no Fulltext
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
crisitem.author.dept
E060-03-1 - Fachgruppe Blended Learning - Methods and Applications
-
crisitem.author.dept
E060-03-1 - Fachgruppe Blended Learning - Methods and Applications
-
crisitem.author.orcid
0000-0002-5669-705X
-
crisitem.author.orcid
0000-0001-7116-1707
-
crisitem.author.parentorg
E060-03 - Fachbereich Studieneingangs- und erfolgsmanagement
-
crisitem.author.parentorg
E060-03 - Fachbereich Studieneingangs- und erfolgsmanagement