<div class="csl-bib-body">
<div class="csl-entry">Horvath, C., Kohlmayer, M.-S., & Körner, A. (2025). Sensitivity Analysis of a Mathematical Model Representing the Female Endocrine Cycle. <i>IFAC-PapersOnLine</i>, <i>59</i>(1), 253–258. https://doi.org/10.1016/j.ifacol.2025.03.044</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/213852
-
dc.description.abstract
This paper presents an extensive global sensitivity analysis of a mathematical model describing the female endocrine cycle. The model, based on a system of differential equations, captures the dynamics of Luteinizing Hormone, Follicle-Stimulating Hormone, Estrogen, and Progesterone, along with their regulatory feedback mechanisms. We employed three complementary methods – Latin Hypercube Sampling, Partial Rank Correlation Coefficient, and extended Fourier Amplitude Sensitivity Test – to analyze both linear and non-linear parameter-output relationships. The extended Fourier Amplitude Sensitivity Test method, in particular, revealed non-monotonic and non-linear interactions between input and output, highlighting the complexity of the hypothalamus-pituitary-ovary axis. Our findings offer significant insights for future model refinement and pave mathematical ways towards better understanding of the female endocrine cycle and potential clinical applications, especially in the diagnosis and treatment of reproductive disorders.
en
dc.language.iso
en
-
dc.publisher
International Federation of Automatic Control ; Elsevier
-
dc.relation.ispartof
IFAC-PapersOnLine
-
dc.subject
Global Sensitivity Analysis
en
dc.subject
Endocrine Systems
en
dc.subject
Hypothalamus-Pituitary-Ovary axis
en
dc.subject
Physiological Model
en
dc.subject
Parameter-varying systems
en
dc.subject
Ordinary Differential Equations
en
dc.subject
Systems Biology
en
dc.title
Sensitivity Analysis of a Mathematical Model Representing the Female Endocrine Cycle
en
dc.type
Article
en
dc.type
Artikel
de
dc.contributor.affiliation
TU Wien, Austria
-
dc.description.startpage
253
-
dc.description.endpage
258
-
dc.type.category
Original Research Article
-
tuw.container.volume
59
-
tuw.container.issue
1
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
tuw.researchTopic.id
C6
-
tuw.researchTopic.name
Modeling and Simulation
-
tuw.researchTopic.value
100
-
dcterms.isPartOf.title
IFAC-PapersOnLine
-
tuw.publication.orgunit
E101-03-3 - Forschungsgruppe Mathematik in Simulation und Ausbildung
-
tuw.publication.orgunit
E065-01 - Fachbereich Center for Technology and Society (CTS)
-
tuw.publication.orgunit
E060-03-1 - Fachgruppe Innovative Methods and Models for Teaching and Learning
-
tuw.publication.orgunit
E101-03-3 - Forschungsgruppe Mathematik in Simulation und Ausbildung
-
tuw.publication.orgunit
E060-04 - Fachbereich Prozessmanagement in der Lehrentwicklung
-
tuw.publisher.doi
10.1016/j.ifacol.2025.03.044
-
dc.identifier.eissn
2405-8963
-
dc.description.numberOfPages
6
-
tuw.author.orcid
0000-0001-7116-1707
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
100
-
item.languageiso639-1
en
-
item.openairetype
research article
-
item.grantfulltext
none
-
item.fulltext
no Fulltext
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
crisitem.author.dept
E101-03-3 - Forschungsgruppe Mathematik in Simulation und Ausbildung
-
crisitem.author.dept
TU Wien
-
crisitem.author.dept
E060-03-1 - Fachgruppe Blended Learning - Methods and Applications
-
crisitem.author.orcid
0000-0001-7116-1707
-
crisitem.author.parentorg
E101-03 - Forschungsbereich Scientific Computing and Modelling
-
crisitem.author.parentorg
E060-03 - Fachbereich Studieneingangs- und erfolgsmanagement