<div class="csl-bib-body">
<div class="csl-entry">Bicher, M., Brunmeir, D., & Popper, N. (2024). Modeling of Agent Decisions Using Conditional Generative Adversarial Networks. In <i>2024 Winter Simulation Conference (WSC)</i> (pp. 2643–2654). IEEE. https://doi.org/10.1109/WSC63780.2024.10838996</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/213925
-
dc.description.abstract
In this paper, we investigate the use of Generative Adversarial Networks (GAN) to model agent behavior in agent-based models. We hereby focus on use cases in which an agent’s decision-making process may only be modeled from data, but it is infeasible to be modeled causally. In these situations, meta-models are often the only way to quantitatively parameterize the agent-based model. However, methods that capture not only deterministic relationships but also stochastic uncertainty are rare. Since GANs are well known for their property to generate pseudo-random-numbers for complex distributions, we explore pros and cons of this strategy for modeling a delay-process in a large-scale agent-based SARS-CoV-2 simulation model.
en
dc.description.sponsorship
FWF - Österr. Wissenschaftsfonds
-
dc.language.iso
en
-
dc.subject
agent-based modelling
en
dc.subject
generative adversarial networks
en
dc.subject
agent decisions
en
dc.subject
random number sampling
en
dc.title
Modeling of Agent Decisions Using Conditional Generative Adversarial Networks
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.relation.isbn
979-8-3315-3420-2
-
dc.description.startpage
2643
-
dc.description.endpage
2654
-
dc.relation.grantno
I 5908-G
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
2024 Winter Simulation Conference (WSC)
-
tuw.peerreviewed
true
-
tuw.relation.publisher
IEEE
-
tuw.relation.publisherplace
Piscataway
-
tuw.project.title
Pro-Active Routing for Emergency Testing in Pandemics