<div class="csl-bib-body">
<div class="csl-entry">Boobier, S., Heeley, J., Gärtner, T., & Hierst, J. D. (2025). Interactive Knowledge-Based Kernel PCA for Solvent Selection. <i>ACS Sustainable Chemistry & Engineering</i>, <i>3</i>(11), 4349–4368. https://doi.org/10.1021/acssuschemeng.4c07974</div>
</div>
-
dc.identifier.issn
2168-0485
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/213928
-
dc.description.abstract
Selecting more sustainable solvents is a crucial component to mitigating the environmental impacts of chemical processes. Numerous tools have been developed to address this problem within the pharmaceutical industry, employing data-driven approaches such as multidimensional scaling or principal component analysis (PCA). Interactive knowledge-based kernel PCA is a variant of PCA that allows users to shape 2D solvent maps by defining the positions of data points, imparting expert knowledge that was not included in the original descriptor set. We have applied interactive PCA to the task of solvent selection and present an intuitive interface that is integrated into AI4Green, an electronic laboratory notebook that encourages sustainable chemistry. A set of evidence-based user guidelines were developed and used in combination with the interactive PCA to identify four potential solvent substitutions for an example thioesterification reaction.
en
dc.description.sponsorship
WWTF Wiener Wissenschafts-, Forschu und Technologiefonds
-
dc.description.sponsorship
FWF - Österr. Wissenschaftsfonds
-
dc.language.iso
en
-
dc.publisher
ACS
-
dc.relation.ispartof
ACS Sustainable Chemistry & Engineering
-
dc.subject
solvent selection
en
dc.subject
machine learning
en
dc.subject
interactive visualization
en
dc.subject
green chemistry
en
dc.subject
principal component analysis
en
dc.subject
open source
en
dc.subject
electronic laboratory notebook
en
dc.title
Interactive Knowledge-Based Kernel PCA for Solvent Selection
en
dc.type
Article
en
dc.type
Artikel
de
dc.contributor.affiliation
University of Nottingham, United Kingdom of Great Britain and Northern Ireland (the)
-
dc.contributor.affiliation
University of Nottingham, United Kingdom of Great Britain and Northern Ireland (the)
-
dc.contributor.affiliation
University of Nottingham, United Kingdom of Great Britain and Northern Ireland (the)
-
dc.description.startpage
4349
-
dc.description.endpage
4368
-
dc.relation.grantno
ICT22-059
-
dc.relation.grantno
I 6728
-
dc.type.category
Original Research Article
-
tuw.container.volume
3
-
tuw.container.issue
11
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
wb.publication.intCoWork
International Co-publication
-
tuw.project.title
Structured Data Learning with Generalized Similarities
-
tuw.project.title
NanoX
-
tuw.researchTopic.id
I4
-
tuw.researchTopic.name
Information Systems Engineering
-
tuw.researchTopic.value
100
-
dcterms.isPartOf.title
ACS Sustainable Chemistry & Engineering
-
tuw.publication.orgunit
E194-06 - Forschungsbereich Machine Learning
-
tuw.publication.orgunit
E056-10 - Fachbereich SecInt-Secure and Intelligent Human-Centric Digital Technologies
-
tuw.publication.orgunit
E056-23 - Fachbereich Innovative Combinations and Applications of AI and ML (iCAIML)
-
tuw.publisher.doi
10.1021/acssuschemeng.4c07974
-
dc.identifier.eissn
2168-0485
-
dc.description.numberOfPages
20
-
tuw.author.orcid
0000-0002-1371-1747
-
tuw.author.orcid
0000-0001-5985-9213
-
wb.sci
true
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Wirtschaftswissenschaften
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
5020
-
wb.sciencebranch.value
90
-
wb.sciencebranch.value
10
-
item.languageiso639-1
en
-
item.openairetype
research article
-
item.grantfulltext
none
-
item.fulltext
no Fulltext
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
crisitem.author.dept
University of Nottingham
-
crisitem.author.dept
University of Nottingham
-
crisitem.author.dept
E194-06 - Forschungsbereich Machine Learning
-
crisitem.author.dept
University of Nottingham
-
crisitem.author.orcid
0000-0002-3166-2782
-
crisitem.author.orcid
0000-0002-1371-1747
-
crisitem.author.orcid
0000-0001-5985-9213
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering
-
crisitem.project.funder
WWTF Wiener Wissenschafts-, Forschu und Technologiefonds