<div class="csl-bib-body">
<div class="csl-entry">Laso, S., Murturi, I., Frangoudis, P., Herrera, J. L., Murillo, J. M., & Dustdar, S. (2025). <i>A Multidimensional Elasticity Framework for Adaptive Data Analytics Management in the Computing Continuum</i>. arXiv. https://doi.org/10.34726/9060</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/213934
-
dc.identifier.uri
https://doi.org/10.34726/9060
-
dc.description.abstract
The increasing complexity of IoT applications and the continuous growth in data generated by connected devices have led to significant challenges in managing resources and meeting performance requirements in computing continuum architectures. Traditional cloud solutions struggle to handle the dynamic nature of these environments, where both infrastructure demands and data analytics requirements can fluctuate rapidly. As a result, there is a need for more adaptable and intelligent resource management solutions that can respond to these changes in real-time. This paper introduces a framework based on multi-dimensional elasticity, which enables the adaptive management of both infrastructure resources and data analytics requirements. The framework leverages an orchestrator capable of dynamically adjusting architecture resources such as CPU, memory, or bandwidth and modulating data analytics requirements, including coverage, sample, and freshness. The framework has been evaluated, demonstrating the impact of varying data analytics requirements on system performance and the orchestrator's effectiveness in maintaining a balanced and optimized system, ensuring efficient operation across edge and head nodes.
en
dc.description.sponsorship
European Commission
-
dc.description.sponsorship
European Commission
-
dc.language.iso
en
-
dc.rights.uri
http://rightsstatements.org/vocab/InC/1.0/
-
dc.subject
Data Analytics
en
dc.subject
Multidimensional
en
dc.subject
Elasticity
en
dc.subject
Management
en
dc.subject
Cloud continuum
en
dc.title
A Multidimensional Elasticity Framework for Adaptive Data Analytics Management in the Computing Continuum
en
dc.type
Preprint
en
dc.type
Preprint
de
dc.rights.license
Urheberrechtsschutz
de
dc.rights.license
In Copyright
en
dc.identifier.doi
10.34726/9060
-
dc.identifier.arxiv
2501.11369
-
dc.contributor.affiliation
Universidad de Extremadura, Spain
-
dc.contributor.affiliation
Universidad de Extremadura, Spain
-
dc.contributor.affiliation
Universidad de Extremadura, Spain
-
dc.relation.grantno
101135576
-
dc.relation.grantno
101079214
-
tuw.project.title
Intent-based data operation in the computing continuum
-
tuw.project.title
Twinning action for spreading excellence in Artificial Intelligence of Things
-
tuw.researchTopic.id
I4
-
tuw.researchTopic.name
Information Systems Engineering
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E194-02 - Forschungsbereich Distributed Systems
-
tuw.publisher.doi
10.48550/arXiv.2501.11369
-
dc.identifier.libraryid
AC17490531
-
dc.description.numberOfPages
6
-
tuw.author.orcid
0000-0001-8911-9371
-
tuw.author.orcid
0000-0003-0240-3834
-
tuw.author.orcid
0000-0001-6901-7714
-
tuw.author.orcid
0000-0002-2280-2878
-
tuw.author.orcid
0000-0003-4961-4030
-
tuw.author.orcid
0000-0001-6872-8821
-
dc.rights.identifier
Urheberrechtsschutz
de
dc.rights.identifier
In Copyright
en
dc.description.sponsorshipexternal
MCIN/AEI/10.13039/501100011033 and EU NextGenerationEU/PRTR