<div class="csl-bib-body">
<div class="csl-entry">Körner, A., Pasterk, D., Stadler, F., & Zeh, C. (2025). Insight-driven Optimization to Improve Dynamic Scheduling for Flexible Job-shops. <i>IFAC-PapersOnLine</i>, <i>59</i>(1), 451–456. https://doi.org/10.1016/j.ifacol.2025.03.077</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/214147
-
dc.description.abstract
Planning and scheduling problems can be challenging to manage, and the related optimization problem is often too complex to solve in real-time. The typical approach to address this issue is to apply heuristic policies, which perform reasonably well. Machine learning algorithms can be used to replace heuristics, but this raises the issue of obtaining unexplainable solutions. The application of reinforcement learning with policy extraction technique can help produce explainable results to improve the dynamic system of the planning and scheduling problem. As a case study, we use the simulation model of a dynamic flexible job shop to learn a solution strategy for the associated scheduling problem with deep reinforcement learning. Based on this, we were able to extract a decision tree that is superior to classical dispatching heuristics for a wide variety of scenarios. It also provides valuable information about the criteria for decision-making. Here we offer a new approach to analyzing and solving these problems - leading to an improvement in dynamic systems.
en
dc.language.iso
en
-
dc.publisher
International Federation of Automatic Control ; Elsevier
-
dc.relation.ispartof
IFAC-PapersOnLine
-
dc.subject
Simulation-based Optimization
en
dc.subject
Explainable AI
en
dc.subject
Reinforcement Learning
en
dc.title
Insight-driven Optimization to Improve Dynamic Scheduling for Flexible Job-shops
en
dc.type
Article
en
dc.type
Artikel
de
dc.contributor.affiliation
TU Wien, Austria
-
dc.description.startpage
451
-
dc.description.endpage
456
-
dc.type.category
Original Research Article
-
tuw.container.volume
59
-
tuw.container.issue
1
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
tuw.researchTopic.id
C6
-
tuw.researchTopic.name
Modeling and Simulation
-
tuw.researchTopic.value
100
-
dcterms.isPartOf.title
IFAC-PapersOnLine
-
tuw.publication.orgunit
E101-03-3 - Forschungsgruppe Mathematik in Simulation und Ausbildung
-
tuw.publication.orgunit
E060-04 - Fachbereich Prozessmanagement in der Lehrentwicklung
-
tuw.publication.orgunit
E065-01 - Fachbereich Center for Technology and Society (CTS)
-
tuw.publication.orgunit
E060-03-1 - Fachgruppe Innovative Methods and Models for Teaching and Learning
-
tuw.publisher.doi
10.1016/j.ifacol.2025.03.077
-
dc.identifier.eissn
2405-8963
-
dc.description.numberOfPages
6
-
tuw.author.orcid
0000-0001-7116-1707
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
100
-
item.languageiso639-1
en
-
item.openairetype
research article
-
item.grantfulltext
none
-
item.fulltext
no Fulltext
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
crisitem.author.dept
E060-03-1 - Fachgruppe Blended Learning - Methods and Applications
-
crisitem.author.dept
E101-03 - Forschungsbereich Scientific Computing and Modelling
-
crisitem.author.dept
TU Wien
-
crisitem.author.dept
Fraunhofer Austria
-
crisitem.author.orcid
0000-0001-7116-1707
-
crisitem.author.parentorg
E060-03 - Fachbereich Studieneingangs- und erfolgsmanagement
-
crisitem.author.parentorg
E101 - Institut für Analysis und Scientific Computing