<div class="csl-bib-body">
<div class="csl-entry">Körner, A., Pasterk, D., Stadler, F., & Zeh, C. (2025). Insight-driven Optimization to Improve Dynamic Scheduling for Flexible Job-shops. In <i>11th Vienna International Conference on Mathematical Modelling MATHMOD 2025 : Vienna, Austria, February 19-21, 2025 : Proceedings</i> (pp. 451–456). International Federation of Automatic Control ; Elsevier. https://doi.org/10.1016/j.ifacol.2025.03.077</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/214147
-
dc.description.abstract
Planning and scheduling problems can be challenging to manage, and the related optimization problem is often too complex to solve in real-time. The typical approach to address this issue is to apply heuristic policies, which perform reasonably well. Machine learning algorithms can be used to replace heuristics, but this raises the issue of obtaining unexplainable solutions. The application of reinforcement learning with policy extraction technique can help produce explainable results to improve the dynamic system of the planning and scheduling problem. As a case study, we use the simulation model of a dynamic flexible job shop to learn a solution strategy for the associated scheduling problem with deep reinforcement learning. Based on this, we were able to extract a decision tree that is superior to classical dispatching heuristics for a wide variety of scenarios. It also provides valuable information about the criteria for decision-making. Here we offer a new approach to analyzing and solving these problems - leading to an improvement in dynamic systems.
en
dc.language.iso
en
-
dc.publisher
International Federation of Automatic Control ; Elsevier
-
dc.relation.ispartofseries
IFAC-PapersOnLine
-
dc.subject
Simulation-based Optimization
en
dc.subject
Explainable AI
en
dc.subject
Reinforcement Learning
en
dc.title
Insight-driven Optimization to Improve Dynamic Scheduling for Flexible Job-shops
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.contributor.affiliation
TU Wien, Austria
-
dc.relation.issn
2405-8963
-
dc.description.startpage
451
-
dc.description.endpage
456
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
11th Vienna International Conference on Mathematical Modelling MATHMOD 2025 : Vienna, Austria, February 19-21, 2025 : Proceedings
-
tuw.container.volume
59(1)
-
tuw.peerreviewed
true
-
tuw.researchTopic.id
C6
-
tuw.researchTopic.name
Modeling and Simulation
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E101-03-3 - Forschungsgruppe Mathematik in Simulation und Ausbildung
-
tuw.publisher.doi
10.1016/j.ifacol.2025.03.077
-
dc.description.numberOfPages
6
-
tuw.author.orcid
0000-0001-7116-1707
-
tuw.event.name
11th Vienna International Conference on Mathematical Modelling (MATHMOD 2025)
-
tuw.event.startdate
19-02-2025
-
tuw.event.enddate
21-02-2025
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Wien
-
tuw.event.country
AT
-
tuw.event.presenter
Körner, Andreas
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
100
-
item.openairetype
conference paper
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.cerifentitytype
Publications
-
item.languageiso639-1
en
-
item.grantfulltext
none
-
item.fulltext
no Fulltext
-
crisitem.author.dept
E060-03-1 - Fachgruppe Blended Learning - Methods and Applications
-
crisitem.author.dept
E101-03 - Forschungsbereich Scientific Computing and Modelling
-
crisitem.author.dept
TU Wien
-
crisitem.author.dept
TU Wien, Austria
-
crisitem.author.orcid
0000-0001-7116-1707
-
crisitem.author.parentorg
E060-03 - Fachbereich Studieneingangs- und erfolgsmanagement
-
crisitem.author.parentorg
E101 - Institut für Analysis und Scientific Computing