<div class="csl-bib-body">
<div class="csl-entry">Wolling, F., Gabor Pal, Larcher, L., & Michahelles, F. (2025). Smart Trash Can: Image Classification and Segmentation for Waste Quality Management in the Home. In <i>IoT ’24: Proceedings of the 14th International Conference on the Internet of Things</i> (pp. 65–71). Association for Computing Machinery. https://doi.org/10.1145/3703790.3703798</div>
</div>
Recycling organic waste through composting or fermentation is a simple but, so far, underrated way to capture CO2. Its effective and qualitative production requires the strict separation of recyclable organic waste from residual waste, but the persistent lack of public awareness still results in a considerable amount of contamination. Impurities from just a single container inevitably reduce the quality and can result in the expensive and less sustainable energy recovery of entire truckloads. To avoid the incineration of valuable organic waste, the problem must be tackled at the producer’s site by preventing the addition of unsuitable waste. We developed a Smart Trash Can that allows to unobtrusively take photos of real waste in the home. Over six months, a total of 450 photos were collected, which were then manually labeled and segmented according to the captured waste types. Based on the collected dataset, two machine-learning approaches for computer vision have been implemented. While the first one binarily classifies the images as either being pure organic or containing impurities with a mean accuracy of 90.35%, the second one detects and segments impurities in the images with a mean accuracy of 98.24% and a mean intersection over union value of 96.43%. With the presented system, not only can contaminated waste be separated from pure organic waste, but also could feedback, incentives, or nudges encourage the producer to separate their waste more carefully in the future.
en
dc.language.iso
en
-
dc.subject
waste quality management
en
dc.subject
recycling
en
dc.subject
compost
en
dc.subject
image classification
en
dc.subject
image segmentation
en
dc.subject
computer vision
en
dc.subject
deep learning
en
dc.subject
dataset
en
dc.title
Smart Trash Can: Image Classification and Segmentation for Waste Quality Management in the Home
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.contributor.affiliation
TU Wien, Austria
-
dc.contributor.affiliation
TU Wien, Austria
-
dc.relation.isbn
979-8-4007-1285-2
-
dc.description.startpage
65
-
dc.description.endpage
71
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
IoT '24: Proceedings of the 14th International Conference on the Internet of Things
-
tuw.peerreviewed
true
-
tuw.relation.publisher
Association for Computing Machinery
-
tuw.relation.publisherplace
New York, United States
-
tuw.researchTopic.id
I5
-
tuw.researchTopic.id
E5
-
tuw.researchTopic.id
I8
-
tuw.researchTopic.name
Visual Computing and Human-Centered Technology
-
tuw.researchTopic.name
Efficient Utilisation of Material Resources
-
tuw.researchTopic.name
Sensor Systems
-
tuw.researchTopic.value
80
-
tuw.researchTopic.value
10
-
tuw.researchTopic.value
10
-
tuw.publication.orgunit
E193-04 - Forschungsbereich Artifact-based Computing & User Research
-
tuw.publisher.doi
10.1145/3703790.3703798
-
dc.description.numberOfPages
7
-
tuw.author.orcid
0000-0002-4431-2378
-
tuw.author.orcid
0009-0003-1949-3108
-
tuw.author.orcid
0009-0005-8973-0257
-
tuw.author.orcid
0000-0003-1486-0688
-
tuw.event.name
14th International Conference on the Internet of Things (IoT 2024)
en
tuw.event.startdate
19-11-2024
-
tuw.event.enddate
22-11-2024
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Oulu
-
tuw.event.country
FI
-
tuw.event.institution
University of Oulu
-
tuw.event.presenter
Wolling, Florian
-
tuw.event.track
Single Track
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Agrarbiotechnologie, Lebensmittelbiotechnologie
-
wb.sciencebranch
Elektrotechnik, Elektronik, Informationstechnik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
4040
-
wb.sciencebranch.oefos
2020
-
wb.sciencebranch.value
80
-
wb.sciencebranch.value
10
-
wb.sciencebranch.value
10
-
item.languageiso639-1
en
-
item.grantfulltext
none
-
item.cerifentitytype
Publications
-
item.openairetype
conference paper
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.fulltext
no Fulltext
-
crisitem.author.dept
E193-04 - Forschungsbereich Multidisciplinary Design and User Research
-
crisitem.author.dept
TU Wien, Austria
-
crisitem.author.dept
TU Wien, Austria
-
crisitem.author.dept
E193-04 - Forschungsbereich Multidisciplinary Design and User Research
-
crisitem.author.orcid
0000-0002-4431-2378
-
crisitem.author.orcid
0009-0003-1949-3108
-
crisitem.author.orcid
0009-0005-8973-0257
-
crisitem.author.orcid
0000-0003-1486-0688
-
crisitem.author.parentorg
E193 - Institut für Visual Computing and Human-Centered Technology
-
crisitem.author.parentorg
E193 - Institut für Visual Computing and Human-Centered Technology