<div class="csl-bib-body">
<div class="csl-entry">Faustmann, M., Marcati, C., Melenk, J. M., & Schwab, C. (2025). Weighted analytic regularity for the integral fractional Laplacian in polyhedra. <i>Analysis and Applications</i>, <i>23</i>(4), 511–552. https://doi.org/10.1142/S0219530524500386</div>
</div>
-
dc.identifier.issn
0219-5305
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/214566
-
dc.description.abstract
On polytopal domains in ℝ3, we prove weighted analytic regularity of solutions to the Dirichlet problem for the shifted integral fractional Laplacian with analytic right-hand side. Employing the Caffarelli-Silvestre extension allows one to localize the problem and to decompose the regularity estimates into results on vertex, edge, face, vertex-edge, vertex-face, edge-face and vertex-edge-face neighborhoods of the boundary. Using tangential differentiability of the extended solutions, a bootstrapping argument based on Caccioppoli inequalities on dyadic decompositions of the neighborhoods provides weighted, analytic control of higher-order solution derivatives.
en
dc.language.iso
en
-
dc.publisher
WORLD SCIENTIFIC PUBL CO PTE LTD
-
dc.relation.ispartof
Analysis and Applications
-
dc.subject
analytic regularity
en
dc.subject
corner domains
en
dc.subject
Fractional Laplacian
en
dc.subject
weighted Sobolev spaces
en
dc.title
Weighted analytic regularity for the integral fractional Laplacian in polyhedra