<div class="csl-bib-body">
<div class="csl-entry">Lemmel, J., Babaiee, Z., Kleinlehner, M., Majic, I., Neubauer, P., Scholz, J., Grosu, R., & Neubauer, S. (2024). Prediction of Tourism Flow with Sparse Geolocation Data. In P. Haber, T. J. Lampoltshammer, & M. Mayr (Eds.), <i>Data Science—Analytics and Applications : Proceedings of the 5th International Data Science Conference—iDSC2023</i> (pp. 45–52). Springer Cham. https://doi.org/10.1007/978-3-031-42171-6_6</div>
</div>
Modern tourism in the 21st century is facing numerous challenges. Among these the rapidly growing number of tourists visiting space-limited regions like historical cities, museums and bottlenecks such as bridges is one of the biggest. In this context, a proper and accurate prediction of tourism volume and tourism flow within a certain area is important and critical for visitor management tasks such as sustainable treatment of the environment and prevention of overcrowding. Static flow control methods like conventional low-level controllers or limiting access to overcrowded venues could not solve the problem yet. In this paper, we empirically evaluate the performance of state-of-the-art deep-learning methods such as RNNs, GNNs, and Transformers as well as the classic statistical ARIMA method. Granular limited data supplied by a tourism region is extended by exogenous data such as geolocation trajectories of individual tourists, weather and holidays. In the field of visitor flow prediction with sparse data, we are thereby capable of increasing the accuracy of our predictions, incorporating modern input feature handling as well as mapping geolocation data on top of discrete POI data.
en
dc.language.iso
en
-
dc.subject
Tourism
en
dc.subject
Time series forecasting
en
dc.subject
Sustainable tourism
en
dc.subject
Sparse geolocation data
en
dc.title
Prediction of Tourism Flow with Sparse Geolocation Data
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.contributor.affiliation
DatenVorsprung GmbH
-
dc.contributor.affiliation
Graz University of Technology, Austria
-
dc.contributor.affiliation
DatenVorsprung GmbH
-
dc.contributor.affiliation
Graz University of Technology, Austria
-
dc.contributor.editoraffiliation
Salzburg University of Applied Sciences, Austria
-
dc.contributor.editoraffiliation
Universität für Weiterbildung Krems, Austria
-
dc.contributor.editoraffiliation
Salzburg University of Applied Sciences, Austria
-
dc.relation.isbn
978-3-031-42170-9
-
dc.relation.doi
10.1007/978-3-031-42171-6
-
dc.description.startpage
45
-
dc.description.endpage
52
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
Data Science—Analytics and Applications : Proceedings of the 5th International Data Science Conference—iDSC2023
-
tuw.peerreviewed
true
-
tuw.book.ispartofseries
International Data Science Conference
-
tuw.relation.publisher
Springer Cham
-
tuw.researchTopic.id
A2
-
tuw.researchTopic.id
C4
-
tuw.researchTopic.id
C6
-
tuw.researchTopic.name
Urban and Regional Transformation
-
tuw.researchTopic.name
Mathematical and Algorithmic Foundations
-
tuw.researchTopic.name
Modeling and Simulation
-
tuw.researchTopic.value
40
-
tuw.researchTopic.value
30
-
tuw.researchTopic.value
30
-
tuw.publication.orgunit
E191-01 - Forschungsbereich Cyber-Physical Systems
-
tuw.publication.orgunit
E056-17 - Fachbereich Trustworthy Autonomous Cyber-Physical Systems
-
tuw.publisher.doi
10.1007/978-3-031-42171-6_6
-
dc.description.numberOfPages
8
-
tuw.author.orcid
0000-0002-3517-2860
-
tuw.author.orcid
0000-0002-8219-005X
-
tuw.author.orcid
0000-0001-5715-2142
-
tuw.editor.orcid
0000-0001-8466-1815
-
tuw.editor.orcid
0000-0002-1122-6908
-
tuw.event.name
5th International Data Science Conference—iDSC2023
en
dc.description.sponsorshipexternal
FFG
-
dc.description.sponsorshipexternal
FWF
-
dc.relation.grantnoexternal
FO999887513
-
dc.relation.grantnoexternal
W1255-N23
-
tuw.event.startdate
02-05-2023
-
tuw.event.enddate
03-05-2023
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Krems an der Donau
-
tuw.event.country
AT
-
tuw.event.institution
Donau-Universität Krems
-
tuw.event.presenter
Babaiee, Zahra
-
tuw.event.track
Single Track
-
wb.sciencebranch
Sonstige und interdisziplinäre Geowissenschaften
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1059
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
10
-
wb.sciencebranch.value
80
-
wb.sciencebranch.value
10
-
item.languageiso639-1
en
-
item.cerifentitytype
Publications
-
item.fulltext
no Fulltext
-
item.grantfulltext
none
-
item.openairetype
conference paper
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
crisitem.author.dept
E191-01 - Forschungsbereich Cyber-Physical Systems
-
crisitem.author.dept
E191-01 - Forschungsbereich Cyber-Physical Systems
-
crisitem.author.dept
DatenVorsprung GmbH
-
crisitem.author.dept
Graz University of Technology, Austria
-
crisitem.author.dept
DatenVorsprung GmbH
-
crisitem.author.dept
E127 - Institut für Geoinformation und Kartographie
-
crisitem.author.dept
E191-01 - Forschungsbereich Cyber-Physical Systems
-
crisitem.author.dept
E192-03 - Forschungsbereich Knowledge Based Systems