<div class="csl-bib-body">
<div class="csl-entry">Höfenstock, F. (2025). <i>Boundary dual field theory for extended asymptotically flat three-dimensional gravity</i> [Diploma Thesis, Technische Universität Wien]. reposiTUm. https://doi.org/10.34726/hss.2025.130972</div>
</div>
-
dc.identifier.uri
https://doi.org/10.34726/hss.2025.130972
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/215326
-
dc.description
Arbeit an der Bibliothek noch nicht eingelangt - Daten nicht geprüft
-
dc.description
Abweichender Titel nach Übersetzung der Verfasserin/des Verfassers
-
dc.description.abstract
siehe engl.
de
dc.description.abstract
The boundary dual field theory for a particular extension of asymptotically flat three-dimensional gravity is worked out. As an extension of the Poincare algebra iso (2, 1), the Maxwell algebra max originally describes the symmetry of a charged particle in a constant electromagnetic field, but applied to the gravitational context, it modifies the Einstein action by generalizing its cosmological term. The Poincare and Maxwell symmetries are discussed in the Chern-Simons formulation of gravity in 2+1 dimensions, which leads asymptotically to the BMS3 algebra and its Maxwell extension in the Maxwellian case. It is then shown that the Chern-Simons action can be reduced to a Wess-Zumino-Witten model, which gives,after defining suitable currents, the Kac-Moody algebra in the Poincar ́e case and its Maxwellextension in the Maxwellian case. Finally, the reduction to a BMS3 invariant Liouville-like theory and Maxwell extended BMS3 in variant Liouville-like theory is shown, which can also be derived from a Carrollian expansion of the AdS3 boundary theory.
en
dc.language
English
-
dc.language.iso
en
-
dc.rights.uri
http://rightsstatements.org/vocab/InC/1.0/
-
dc.subject
Maxwell algebra
en
dc.subject
Chern-Simons
en
dc.subject
3d gravity
en
dc.subject
asymptotic symmetries
en
dc.subject
Carroll limit
en
dc.title
Boundary dual field theory for extended asymptotically flat three-dimensional gravity