<div class="csl-bib-body">
<div class="csl-entry">Marin, D. (2025). <i>Proximity-Based Point Cloud Reconstruction</i> [Dissertation, Technische Universität Wien]. reposiTUm. https://doi.org/10.34726/hss.2025.128668</div>
</div>
-
dc.identifier.uri
https://doi.org/10.34726/hss.2025.128668
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/215385
-
dc.description
Arbeit an der Bibliothek noch nicht eingelangt - Daten nicht geprüft
-
dc.description
Abweichender Titel nach Übersetzung der Verfasserin/des Verfassers
-
dc.description.abstract
Extrapolating information from incomplete data is a key human skill, enabling us to inferpatterns and make predictions from limited observations. A prime example is our ability to perceive coherent shapes from seemingly random point sets, a key aspect of cognition.However, data reconstruction becomes challenging when no predefined rules exist, as it is unclear how to connect the data or infer patterns. In computer graphics, a major goal isto replicate this human ability by developing algorithms that can accurately reconstruct original structures or extract meaningful information from raw, disconnected data.The contributions of this thesis deal with point cloud reconstruction, leveraging proximity-based methods, with a particular focus on a specific proximity-encoding data structure -the spheres-of-influence graph (SIG). We discuss curve reconstruction, where we automate the game of connecting the dots to create contours, providing theoretical guarantees for our method. We obtain the best results compared to similar methods for manifold curves. We extend our curve reconstruction to manifolds, overcoming the challenges of moving to different domains, and extending our theoreticalguarantees. We are able to reconstruct curves from sparser inputs compared to the state-of-the-art, and we explorevarious settings in which these curves can live. We investigate the properties of the SIGas a parameter-free proximity encoding structure of three-dimensional point clouds. We introduce new spatial bounds for the SIG neighbors as a theoretical contribution. We analyze how close the encoding is to the ground truth surface compared to the commonly used kNN graphs, and we evaluate our performance in the context of normal estimationas an application. Lastly, we introduce SING – a stability-incorporated neighborhood graph, a useful tool with various applications, such as clustering, and with a strong theoretical background in topological data analysis.
en
dc.language
English
-
dc.language.iso
en
-
dc.rights.uri
http://rightsstatements.org/vocab/InC/1.0/
-
dc.subject
point clouds
en
dc.subject
reconstruction
en
dc.subject
proximity graphs
en
dc.subject
curve reconstruction
en
dc.subject
clustering
en
dc.subject
geometry processing
en
dc.title
Proximity-Based Point Cloud Reconstruction
en
dc.type
Thesis
en
dc.type
Hochschulschrift
de
dc.rights.license
In Copyright
en
dc.rights.license
Urheberrechtsschutz
de
dc.identifier.doi
10.34726/hss.2025.128668
-
dc.contributor.affiliation
TU Wien, Österreich
-
dc.rights.holder
Diana Marin
-
dc.publisher.place
Wien
-
tuw.version
vor
-
tuw.thesisinformation
Technische Universität Wien
-
dc.contributor.assistant
Ohrhallinger, Stefan
-
tuw.publication.orgunit
E193 - Institut für Visual Computing and Human-Centered Technology
-
dc.type.qualificationlevel
Doctoral
-
dc.identifier.libraryid
AC17518474
-
dc.description.numberOfPages
141
-
dc.thesistype
Dissertation
de
dc.thesistype
Dissertation
en
tuw.author.orcid
0000-0002-8812-9719
-
dc.rights.identifier
In Copyright
en
dc.rights.identifier
Urheberrechtsschutz
de
tuw.advisor.staffStatus
staff
-
tuw.assistant.staffStatus
staff
-
tuw.advisor.orcid
0000-0002-9370-2663
-
tuw.assistant.orcid
0000-0002-2526-7700
-
item.grantfulltext
open
-
item.openairecristype
http://purl.org/coar/resource_type/c_db06
-
item.openairetype
doctoral thesis
-
item.openaccessfulltext
Open Access
-
item.languageiso639-1
en
-
item.cerifentitytype
Publications
-
item.fulltext
with Fulltext
-
crisitem.author.dept
E193-03 - Forschungsbereich Virtual and Augmented Reality
-
crisitem.author.orcid
0000-0002-8812-9719
-
crisitem.author.parentorg
E193 - Institut für Visual Computing and Human-Centered Technology